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Many brain-based disorders are traditionally diagnosed based on clinical interviews

and behavioral assessments, which are recognized to be largely imperfect. Therefore,

it is necessary to establish neuroimaging-based biomarkers to improve diagnostic

precision. Resting-state functional magnetic resonance imaging (rs-fMRI) is a promising

technique for the characterization and classification of varying disorders. However,

most of these classification methods are supervised, i.e., they require a priori

clinical labels to guide classification. In this study, we adopted various unsupervised

clustering methods using static and dynamic rs-fMRI connectivity measures to

investigate whether the clinical diagnostic grouping of different disorders is grounded

in underlying neurobiological and phenotypic clusters. In order to do so, we

derived a general analysis pipeline for identifying different brain-based disorders

using genetic algorithm-based feature selection, and unsupervised clustering methods

on four different datasets; three of them—ADNI, ADHD-200, and ABIDE—which

are publicly available, and a fourth one—PTSD and PCS—which was acquired

in-house. Using these datasets, the effectiveness of the proposed pipeline was verified

on different disorders: Attention Deficit Hyperactivity Disorder (ADHD), Alzheimer’s

Disease (AD), Autism Spectrum Disorder (ASD), Post-Traumatic Stress Disorder

(PTSD), and Post-Concussion Syndrome (PCS). For ADHD and AD, highest similarity

was achieved between connectivity and phenotypic clusters, whereas for ASD

and PTSD/PCS, highest similarity was achieved between connectivity and clinical

diagnostic clusters. For multi-site data (ABIDE and ADHD-200), we report site-specific

results. We also reported the effect of elimination of outlier subjects for all four
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datasets. Overall, our results suggest that neurobiological and phenotypic biomarkers

could potentially be used as an aid by the clinician, in additional to currently available

clinical diagnostic standards, to improve diagnostic precision. Data and source code

used in this work is publicly available at https://github.com/xinyuzhao/identification-of

-brain-based-disorders.git.

Keywords: functional MRI, unsupervised learning, clustering, genetic algorithm, functional connectivity, effective

connectivity, psychiatric disorders

INTRODUCTION

A neuropsychiatric disorder is a brain-based dysfunctional
condition associated with impairments of affect, cognition
and behavior. Many factors contribute to these disorders, e.g.,
genes, family history, substance abuse, traumatic brain injury,
life experience, environmental conditions etc. Conventional
diagnosis primarily consists of clinical interviews and
standardized psychometric testing, which are recognized to
be largely imperfect [1–3]. Because neuropsychiatric pathologies
are complex, which can lead to inconsistencies between
clinicians’ diagnoses, there is increasing interest in identifying
non-invasive neuroimaging biomarkers. The most commonly
used approach for achieving this is by employing supervised
learning models such as support vector machines [4, 5],
artificial neural networks [6], and decision trees [7], wherein
the model learns the associations between patterns in the data
and diagnostic labels using a training data set. This model can
then be tested on an independent validation data set. However,
the problem with such an approach is that the model itself is
based on clinical labels, and hence, it cannot be used to uncover
novel structures and groupings from the data. The problem can
be addressed by employing unsupervised models. Unsupervised
models have been traditionally used to uncover clusters of
subjects with similar patterns of imaging data, with applications
in identifying disease clusters [8, 9] as well as sub-clusters [10]
within a disease. Most of these studies use k-means clustering
[11, 12]. However, it is besieged with methodological issues
such as a priori choice of clusters needed in k-means, and the
large dimensionality of imaging data necessitates some type of
dimensionality reduction for clustering to work as intended.
Problematically, this last step is either not carried out [13], or
carried out by preselecting features not from the structure in
the data, but by some external considerations such as previous
findings in a given disorder [14, 15]. Such approaches rob the
method of its advantages of being truly data-driven, in that
the clusters obtained from imaging data are seldom compared
to data obtained from clinical diagnostic criteria and related
behavioral phenotypes. This is important because disease clusters
obtained from any method, be it imaging or another diagnostic
tool, should be linked with the behavioral phenotype. In this
study, we address the above shortcomings using resting state
functional magnetic resonance imaging (rs-fMRI) data obtained
from five different neuropsychiatric disorders: Attention
Deficit Hyperactivity Disorder (ADHD), Alzheimer’s Disease
(AD), Autism Spectrum Disorder (ASD), Posttraumatic Stress

Disorder (PTSD) and Post-Concussion Syndrome (PCS). We
provide a brief introduction to these disorders in the following
paragraphs.

Attention Deficit Hyperactivity Disorder
ADHD is a psychiatric disorder characterized by impulsiveness,
inattention, and hyperactivity. This condition affects about
5% of children and adolescents worldwide [16]. Symptoms
include difficulty staying focused and paying attention,
difficulty controlling behavior, and hyperactivity. ADHD
has three subtypes: ADHD hyperactive-impulsive (ADHD-
H), ADHD inattentive (ADHD-I), and ADHD combined
hyperactive-impulsive and inattentive subtype (ADHD-C).
Because symptoms vary from person to person, ADHD can be
difficult to identify. In addition, there has been a debate that
ADHD is over-diagnosed in children and adolescents by current
clinical criterion [17].

Alzheimer’s Disease
AD is the most commonly diagnosed type of dementia in elderly
patients [18], which is characterized by memory dysfunction,
cognitive decline, etc. Before the onset of dementia, patients
may develop an intermediate stage of dysfunction known as
mild cognitive impairment (MCI). Patients with MCI have a
higher risk of progressing to AD [19]. According to results
from the Honolulu-Asia Aging Study [20], as many as one-third
of all Alzheimer’s diagnoses may actually be false positives. In
addition, the diagnostic boundary between AD and MCI is not
well established.

Autism Spectrum Disorder
ASD is a pervasive developmental disorder clinically
characterized by social and communication impairments as
well as restricted interests and repetitive behaviors [1]. While the
boundaries between ASD, its comorbidities, and neurotypicals
with sub-clinical ASD-like traits are blurred, several diagnostic
subcategories within ASD were defined: autism, Asperger’s
disorder, and pervasive developmental disorder-not otherwise
specified (PDD-NOS). It has been often argued that the
Asperger’s disorder criteria is problematic [21, 22]. In the
latest DSM-V classification, Asperger’s and PDD-NOS were
eliminated, in favor of the so called “dimensional assessment” of
the autism spectrum [23]. This highlights the confusion in the
field due to lack of objective biomarkers based on underlying
neurobiology.
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Post-traumatic Stress Disorder
PTSD is a disabling condition in individuals exposed to a
traumatic event, such as war, violent crime, and motor vehicle
accidents [24]. PTSD is characterized by intrusive avoidance,
hypervigilance, hyperarousal and alterations in cognition and
mood [25]. PTSD is found to be associated with aberrant
functioning of the amygdala, hippocampus, insula, and regions
of the prefrontal cortex such as the ventromedial PFC
[26–28]. Although cognitive decrements are associated with
PTSD, there is evidence that they are mediated by comorbid
symptoms of the disorder (e.g., depression and anxiety)
[29].

Post-concussion Syndrome
PCS emerges in a subset of individuals who sustain a mild
traumatic brain injury (mTBI) or concussion. It includes a
constellation of prolonged symptoms, which persist several
months after the mTBI. Symptoms can be categorized as
vestibular, cognitive, affective, and somatosensory [30–32]. In
military service members, diagnosis can be more complex since
it has high co-morbidity with PTSD, along with homogeneity of
symptomatology between the two disorders [33, 34].

In summary, although the neuropsychiatric disorders
delineated have well established diagnostic criteria, overlapping
symptoms with other neuropsychiatric disorders are common,
and in some cases manifest as comorbidities. The neural circuits
implicated in a given disorder are also often overlapping
with that of other disorders. In addition, conventional
diagnostic categories often do not adequately capture the
spectrum of symptoms and impairments ranging from
mild to severe. Further, categorization of subgroups within
several disorders have yet to be fully characterized. Thus,
neuroimaging-based diagnostic classification and biomarkers
can improve our understanding of subgroups within a specific
neuropsychiatric disorder and eventually improve diagnostic
precision.

This approach has indeed been promoted actively by the
National Institute of Mental Health (NIMH) in the United States
by the publication of “Research Domain Criteria” (RDoC,
http://www.nimh.nih.gov/research-priorities/rdoc/nimh-
research-domain-criteria-rdoc.shtml). RDoC is agnostic to
present disorder categories. Its intent is the generation of
disorder classifications in a data-driven fashion. The “core
unit of analysis” as advanced by RDoC is the “measurements
of particular circuits as studied by neuroimaging techniques.”
In keeping with this ideology, a recent report demonstrated
how data-driven definition of diagnostic groups in psychiatric
spectrum disorders could identify new groups that had better
mapping onto behavioral clusters [35, 36]. Our approach in this
work is inspired by these recent developments.

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a promising tool for studying neuropsychiatric
disorders [37–42]. It measures spontaneous fluctuations in
the blood oxygen level-dependent (BOLD) signal, while the
participants do not perform any explicit task [43, 44].
Considering machine learning applied to rs-fMRI, a common

methodology is to apply supervised classification methods
on functional connectivity (FC) features obtained from rs-
fMRI to identify brain-based disorders with FC aberrations.
For example, some studies [6] used support vector machine
(SVM) and artificial neural network (ANN) on different brain
connectivity measures to identify ADHD. Khazaee et al. [3]
combined a graph theoretical approach with SVM to classify
patients with AD and MCI from healthy individuals. Plitt
et al. [2] applied different classification methods, e.g., K-nearest
neighbor (KNN), linear support vector machines (L-SVM),
Gaussian kernel support vector machines (rbf-SVM) and L1-
regularized logistic regression on rs-fMRI connectivity features
to establish biomarkers for Autism spectrum disorders (ASD).
However, the supervised machine learning methods used in such
studies requires a priori clinical diagnoses to guide classification.
In addition, most studies only target classifying one specific
illness.

In this work, we attempt to address the aforementioned four
challenges in supervised models by deriving a general analysis
pipeline for identifying different neuropsychiatric disorders
using unsupervised clustering methods. There have been very
few studies using unsupervised models on rs-fMRI data to
identify different neuropsychiatric disorders [1]. The main idea
of unsupervised learning or clustering is to group subjects in such
a way that those in the same group are more similar to each
other than to those in other groups. Three clustering methods
were specifically chosen: hierarchical clustering [45], ordering
points to identify the clustering structure (OPTICS) [46], and
density peak clustering (DPC) [47], since these methods do not
require a priori specification of the number of clusters. The
commonly used k-means clustering [48, 49] was not considered
in this study due to the uncertainty of the number of clusters
and sensitivity to outliers. Since clustering accuracy is often lower
in high dimensional feature space, feature selection methods
were applied. Most existing feature selection algorithms in the
machine learning literature focus on heuristic search such as
sequential forward searching (SFS) [50], non-linear optimization
[51], genetic algorithm (GA) [50], etc. Bradley et al. proposed
a non-linear optimization using a non-linear kernel support
vector machine. Although this method provides high accuracy,
it can only be used in the supervised learning context. SFS
was proposed based on a greedy algorithm, which follows the
problem-solving heuristic of making the locally optimal decision
at each step. Similar to SFS, here we propose a sequential feature
ranking (SFR) method by applying ANOVA testing among
different groups (e.g., control group, disease subgroups) and then
sequentially selecting features from the original dataset based
on the p-value of each feature. Although SFS and SFR can
be applied in unsupervised learning, they do not guarantee an
optimal solution. Therefore, we propose GA as a robust feature
selection method for unsupervised learning approaches for the
identification of disease clusters from FC features by maximizing
the similarity between connectivity and clinical diagnosis, as well
as between connectivity and behavioral phenotypes, respectively.
The identified clusters were then compared with those obtained
from clinical diagnostic criteria and behavioral phenotypes in

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 September 2018 | Volume 4 | Article 25

http://www.nimh.nih.gov/research-priorities/rdoc/nimh-research-domain-criteria-rdoc.shtml
http://www.nimh.nih.gov/research-priorities/rdoc/nimh-research-domain-criteria-rdoc.shtml
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao et al. Correspondence of Clinical-Neurobiological-Phenotypic Clusters

FIGURE 1 | Illustration of proposed pipeline for identifying different brain-based disorders using unsupervised clustering methods. The main pipeline is depicted in

purple color along with two supplementary analyses, site-specific analysis in salmon color and outlier subject elimination in green color. SFC, static functional

connectivity; vDFC, variance of dynamic functional connectivity; SEC, static effective connectivity; vDFC, variance of dynamic effective connectivity; HRF,

hemodynamic response functional; GA, genetic algorithm; DPC, density peak clustering; OPTICS, ordering points to identify the clustering structure: clustering

algorithm; CM, co-association matrix.

order to investigate their similarity with disease clusters identified
from rs-fMRI connectivity.

MATERIALS AND METHODS

In this work, a general pipeline has been derived (Figure 1) for
identifying different brain-based disorders using unsupervised
clustering methods. In addition, several supplementary analyses
have been performed, e.g., site-specific analysis for multi-site
data, elimination of outlier subjects, and enrichment analysis.
The details of each step in the pipeline are described next.
ADHD, AD and ASD data were obtained from publicly available
databases. Details regarding ethical approvals for those data can
be obtained from the links provided below. The PTSD study was
carried out in-house, in accordance with the recommendations
of Auburn University Institutional Review Board (IRB) and
the Headquarters U.S. Army Medical Research and Material
Command, IRB (HQ USAMRMC IRB) with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The

protocol was approved by the AuburnUniversity IRB and theHQ
USAMRMC IRB.

Participants and Non-imaging Measures
ADHD

Four hundred and eighty-seven subjects with complete
phenotypic data were selected from the ADHD-200 dataset
(http://fcon_1000.projects.nitrc.org/indi/adhd200/), which
included 272 healthy controls (HC), 118 subjects with ADHD-C,
and 97 subjects with ADHD-I. The number of subjects with
ADHD-H were too small (n < 10), therefore ADHD-H was not
considered in this work. The subjects were scanned at one of
these three different sites: Peking University, Kennedy Krieger
Institute (KKI), and New York University Child Study Center
(NYU).

Subjects scanned at Peking University with diagnosis
of ADHD were initially identified using the Computerized
Diagnostic Interview Schedule IV [C-DIS-IV] [52]. All
participants (ADHD and HC) were evaluated with the Schedule
of Affective Disorders and Schizophrenia for Children—Present
and Lifetime Version [KSADS-PL] [53], with one parent for
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TABLE 1 | Phenotypic variables selected by GA with different clustering methods

(ADHD).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

ADHD index score X

Inattentive score X X X

Hyper/impulsive score X X X

VIQ X X

PIQ X

FIQ X X

the establishment of the diagnosis for study inclusion. The
ADHD Rating Scale [ADHD-RS-IV] [54, 55] was employed to
provide dimensional measures of ADHD symptoms. Intelligence
was evaluated with the Wechsler Intelligence Scale for Chinese
Children-Revised [WISCC-R] [56].

In the KKI sample, psychiatric diagnoses were based on
evaluations with the Diagnostic Interview for Children and
Adolescents, Fourth Edition [DICA-IV] [57], a structured
parent interview based on DSM-IV criteria; the Conners’
Parent Rating Scale-Revised, Long Form [CPRS-R] [58], and
ADHD-RS-IV. Intelligence was evaluated with the Wechsler
Intelligence Scale for Children-Fourth Edition [WISC-IV] [59]
and academic achievement was assessed with the Wechsler
Individual Achievement Test-II [60].

In the NYU sample, psychiatric diagnoses were based
on evaluations with KSADS-PL, administered to parents and
children and CPRS-R. Intelligence was evaluated with the
Wechsler Abbreviated Scale of Intelligence [WASI] [61].

Six Phenotypic variables were measured for all sites (Table 1),
i.e., three ADHD measures including ADHD index score,
Inattentive score, and Hyper/Impulsive score [62], and three IQ
measures including Verbal IQ [VIQ], Performance IQ [PIQ], and
Full Scale IQ [FIQ] [63].

AD
Rs-fMRI data from the Alzheimer’s disease neuroimaging
initiative (ADNI) database (http://adni.loni.usc.edu/) was
utilized in this study. The sample consisted of subjects with three
progressive stages of cognitive impairment—early MCI [EMCI]
(n = 23), late MCI [LMCI] (n = 29), and AD (n = 13)—along
with matched HC (n= 31).

The patients with AD had a Mini-Mental State Examination
[MMSE] [64] score of 14–26, a Clinical Dementia Rating [CDR]
[65] of 0.5 or 1.0 and met the National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer’s
disease and Related Disorders Association [NINCDS/ADRDA]
criteria [66] for probable AD. The patients with MCI had
MMSE scores between 24 and 30, a memory complaint, objective
memory loss measured by education adjusted scores onWechsler
Memory Scale Logical Memory II, a CDR of 0.5, absence of
significant levels of impairment in other cognitive domains,
essentially preserved activities of daily living and an absence of
dementia [3].

TABLE 2 | Phenotypic variables selected by GA with different clustering methods

(AD).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

APOE A1 and A2 X X

NPI

GDS

MMSE X X X

CDR X X X

FAQ X X X

Eight phenotypic variables, i.e., neuropsychiatric inventory
[NPI] score [67], geriatric depression scale [GDS] [65], MMSE,
CDR and functional assessment questionnaire [FAQ] [68], and
one genetic variable i.e., apolipoprotein [APOE] A1 and A2
genotypes [69], were measured (Table 2). Except for the AD
dataset, all other three datasets (ADHD, ASD, and PTSD) only
have phenotypic variables. Thus, we just refer to these variables
as phenotypic variables henceforth.

ASD

Four hundred and fifty-four subjects with complete phenotypic
data were selected from the Autism Brain Imaging Data
Exchange (ABIDE) database (http://fcon_1000.projects.nitrc.
org/indi/abide/index.html). The sample consisted of 256 HC, 166
subjects with autism, and 32 subjects with Asperger’s. Including
PDD-NOS and “Asperger’s or PDD-NOS” would have made the
whole dataset more unbalanced, therefore these two subgroups
were not considered in this study. Each subject was scanned at
one of the following seven different sites: California Institute of
Technology (Caltech), Carnegie Mellon University (CMU), NYU
Langone Medical Center (NYU), University of Pittsburgh School
of Medicine (Pitt), San Diego State University (SDSU), Trinity
Center for Health Sciences (Trinity), and University of California
Los Angeles (UCLA).

For most of the sites, diagnosis of ASD was consistent with
the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition, Text Revision [DSM-IV-TR] criteria [70], and
classification of either autism or Asperger’s was made by a
clinician based on the Autism Diagnostic Observation Schedule
[ADOS] [71] and Autism Diagnostic interview-Revised [ADI-
R] [72]. HC subjects were screened through a self-report history
questionnaire to rule out other disorders, such as ASD, ADHD,
or Tourette’s Disorder.

Ten phenotypic variables were measured (Table 3) at all
sites including three IQ measures, i.e., FIQ, VIQ, PIQ, four
ADI_R measures, i.e., Reciprocal Social Interaction Subscore
[ADI_R_SOCIAL], Abnormalities in Communication Subscore
[ADI_R_VERBAL], Restricted, Repetitive, and Stereotyped
Patterns of Behavior Subscore [ADI_RRB], Abnormality of
Development Evident at or Before 36 Months Subscore
[ADI_R_ONSET], and three ADOS measures, i.e., Classic Total
ADOS Score [ADOS_TOTAL], Communication Total Subscore
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TABLE 3 | Phenotypic variables selected by GA with different clustering methods

(ASD).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

FIQ X X X

VIQ X

PIQ X

ADI_R_SOCIAL X X

ADI_R_VERBAL X X

ADI_RRB X

ADI_R_ONSET

ADOS_TOTAL X

ADOS_COMM X X

ADOS_SOCIAL X X

of the Classic ADOS [ADOS_COMM], and Social Total Subscore
of the Classic ADOS [ADOS_SOCIAL].

PTSD and PCS

Eighty-seven active-duty male U.S. Army Soldiers (selected from
Fort Benning, GA, USA and Fort Rucker, AL, USA) voluntarily
participated in the current study. All of subjects had combat
experience in Iraq (Operation Iraqi Freedom [OIF]) and/or
Afghanistan (Operation Enduring Freedom [OEF]). Each subject
was evaluated using three factors: (1) symptom severity in
PTSD measured with “PTSD Checklist-5” [PCL5] score [73],
(2) symptom severity in PCS measured with “Neurobehavioral
Symptom Inventory” [NSI] score [74], and (3) medical history.
Based on these factors, (i) 17 subjects were grouped as PTSD with
no history of mTBI in the last 5 years, a total score ≥38 on PCL5
and <26 on NSI, (ii) 42 subjects were grouped as the comorbid
PCS+PTSD with a history of medically documented mTBI, post-
concussive symptoms, and scores≥38 on PCL5 and≥26 on NSI,
and (iii) 28 subjects were grouped as combat controls with a
score <38 on PCL5 and <26 on NSI, no DSM-IV-TR or DSM-
V diagnosis of a psychotic disorder (e.g., schizophrenia), no
mTBI within the last 5 years, and no history of a moderate-to-
severe TBI. All of these three groups were matched in age, race,
deployment history, and education. Comparing NSL score and
PCL5 score among these groups, it can be seen that NSI scores
were significantly different between the PCS+PTSD group and
the PTSD and control groups combined (p= 1.32× 10−29). Also
the PCL5 scores were significantly different between the control
group and the PTSD and PCS+PTSD groups combined (p= 3.64
× 10−44).

Thirty-two phenotypic variables were used including ten
primary Neurocognitive measures CNS-Vital Signs R© [CNS-
VS] measures [75] (which is a computerized neurocognitive
assessment battery), seven derived CNS-VS domain scores,
eight self-report psychological health measures, and seven
neurocognitive measures from a second battery, the Automated
Neuropsychological Assessment Metric (ANAM 4.0) (Table 4).
The ten primary CNS-VS measures were Symbol Digit Coding
[SDC; correct responses], Stroop Test [ST] (simple and complex),

TABLE 4 | Phenotypic variables selected by GA with different clustering methods

(PTSD/PCS).

Phenotypic/genetic variables Selected variables

DPC OPTICS Hierarchical

Primary CNS-VS

measures

SDC correct X X

ST simple

ST complex

SAT correct

SAT RT

CPT correct

CPT RT

DTT percent box

DTT correct

DST

Derived CNS-VS

measures

NCI

RT

VM

CA

CF

EF

PS

Self-report measures LC

PSS

PSQI

ESS

ZDS X X X

ZAS X

CES X X X

LEC X X

Other psychometric

measures

CDD_SS X

CDS_SS

MTS

MP

PRT

SRT2

SRT

Shifting Attention Test (SAT), Continuous Performance Test
[CPT; correct responses and reaction time, RT], Dual-Task
Test [DTT; correct responses and RT], and Digit Span Test
[DST]. Seven derived CNS-VS domain scores were verbal
memory [VM], complex attention [CA], reaction time [RT],
processing speed [PS], cognitive flexibility [CF], executive
functioning [EF], and neurocognitive composite index [NCI],
which was computed by averaging the other six domain scores.
Domain scores were standardized to have a mean of 100 and
standard deviation of 15. In addition, data from the ANAM
seven subtests were included—Coded Digit Substitution [CDS],
Coded Digit Substitution-Delayed [CDD], Matching to Sample
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[MTS], Mathematical Processing [MP], Procedural Reaction
Time [PRT], Simple Reaction Time [SRT], and Simple Reaction
Time-Delayed [SRT2]. Effort was also assessed to improve the
validity of our assessment data. Finally, the Test of Memory
Malingering (TOMM) was applied consisting of two learning
trials and a retention trial that uses pictures of common, everyday
objects (e.g., chair, pencil). A cut-off score (<45 correct) for
the first two learning trials was used to determine eligibility for
participation in the study.

Psychological health was assessed using five self-report
measures—Perceived Stress Scale [PPS], Pittsburgh Sleep Quality
Index [PSQI], Epworth Sleepiness Scale [ESS], Zung Anxiety
Scale [ZAS] and Zung Depression Scale [ZDS]; and three
exposure/injury descriptive measures—Combat Exposure Scale
[CES], lifetime concussions [LC], and Life Events Checklist
[LEC].

The study protocol and procedures were approved by
the Auburn University Institutional Review Board (IRB) and
the Headquarters U.S. Army Medical Research and Material
Command, IRB (HQ USAMRMC IRB).

Data Acquisition and Preprocessing
For each neuropsychiatric disorder, an rs-fMRI dataset was
obtained using different scanners with different parameters. A
standard preprocessing was then performed on each dataset,
individually. The details of data acquisition and preprocessing
are described in Supplementary Material: Data Acquisition and
Preprocessing.

Connectivity Measures
Given the high dimensionality of whole-brain data, each rs-
fMRI image was partitioned into 200 (for ADHD, AD, and ASD)
or 125 (for PTSD/PCS) functionally homogenous regions of
interests (ROIs) using spatially constrained spectral clustering
[cc200 template] [76]. Even though the same parcellation was
used on all the datasets, we ended up with only 125 regions
for the PTSD/PCS dataset since we had limited brain coverage
(cerebellum was excluded). The mean time series for each ROI
was subsequently extracted. Deconvolution of ROI time series
was then performed using the method proposed byWu et al. [77]
to obtain hidden neuronal time series [78–81]. Deconvolution
was performed because fMRI is an indirect measure of neural
activity that can be influenced, at least in-part, by non-neural
factors which control the shape of the hemodynamic response
function (HRF), and deconvolution minimizes the inter-subject
and spatial variability of the HRF that could potentially give rise
to false connectivity estimates [82–91].

Next, four connectivity matrices—statistic functional
connectivity (SFC), variance of dynamic functional connectivity
(vDFC) [92], statistic effective connectivity (SEC) [93–96],
and variance of dynamic effective connectivity (vDEC)
[97–99]—were computed using the latent neuronal time
series.

Functional connectivity (FC) refers to the functional co-
activation between two different brain regions. In this study,
static functional connectivity (SFC) was evaluated using
Pearson’s correlation coefficient, which gives a constant measure

of connection strength between two time series. Although
most of studies investigate SFC assuming the connectivity is
temporally stable, it has been shown that dynamic changes
in FC are relevant to neuropathology [100] as well as
behavioral performance in different cognitive domains in healthy
individuals [92]. Hutchison and his colleagues also provided
a comprehensive overview of dynamic functional connectivity
(DFC) in rs-fMRI [101]. In this study, similar to our previous
study [92], DFC was evaluated using a sliding windowed
Pearson’s correlation with variable window length. The window
length was determined adaptively by timeseries stationarity
assessed through the augmented Dickey-Fuller test (ADF test),
which searches for the optimal window length within a specified
range using stationarity of the signal as the criteria for
optimization. According to Jia’s [92] study, we used a liberal range
of 20–140 data points in this work.

While FC is a non-directional quantity, another approach
to brain connectivity modeling is effective connectivity (EC),
which characterizes directional causal interactions in the brain.
It gives characteristically different information from FC, i.e., the
former characterizes causal influences while the latter captures
co-activation, both of which have been acknowledged as distinct
modes of communication in the brain [93]. We evaluated
SEC using Granger causality [102–104], which quantifies the
directional influence of one region over the other. We also
evaluated its time-varying version, DEC [105–108], using time-
varying Granger causality evaluated in a dynamic Kalman filter
framework [109–112].

SFC, DFC, SEC, and DEC values were obtained between
all pairs of brain regions. Variance of DFC (and DEC) were
computed to obtain vDFC (and vDEC). This provides a single
measure of variability of connectivity over time for every
connection [84, 113]. In effect, we employed the measures of
strength and temporal variability of co-activation and causality
in this work. Significant group differences were obtained with
each of these measures for each of the datasets using one-
way ANOVAs, and only the top significant features (p < 0.01)
were used in further clustering analysis. This was done in order
to minimize the effect of noisy measurements and outliers on
clustering analysis.

Clustering and Feature Selection
In order to test whether clinical diagnostic grouping was
grounded in the underlying neurobiological and phenotypic
clusters, the three clustering methods, i.e., hierarchical clustering
[45, 114, 115], Ordering Points to Identify the Clustering
Structure—OPTICS [46], and Density Peak Clustering—DPC
[47], were applied on three types of features: (i) connectivity-
based features: SFC, SEC, vDFC, and vDEC, (ii) clinical
diagnostic measures, and (iii) phenotypic and genetic (when
available) variables. In each clustering method, there are several
user specified input parameters and the clustering results greatly
depend on these parameters. To determine the optimal value
for each input parameter, the Calinski-Harabasz (CH) index
[116, 117] was applied in this work. Detailed description of each
of the clustering methods as well as parameter optimization are
described in section 3 of the Supplementary Material.
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The clustering accuracy is often lower in high dimensional
feature space, because most of the features may be irrelevant,
redundant, or sometimes may even misguide results. Moreover,
a large number of features make the clustering results difficult
to interpret. Therefore, it is necessary to select a minimum
subset of relevant features to achieve a meaningful cluster
separation. For supervised learning, feature selection can be
trivial, i.e., only the features that are related to the given
cluster labels are maintained. Nevertheless, for unsupervised
learning, the cluster labels are unknown. Thus, finding the
relevant subset of features and clustering the subset of the
data must be accomplished simultaneously. In this work, three
different feature selection methods were performed, i.e., in house
SFR, SFS [50], and GA [118, 119], to find the optimal subset
of features. The performances of these three methods were
compared in the Results section. Detailed description of these
feature selection methods can be found in section 4 of the
Supplementary Material.

Site-Specific Analysis
Since we are more interested in the similarity of the clusters
obtained from different types of features such as connectivity
and phenotypic variables and not per se in the clustering
accuracy, we did not perform cross-validation during clustering.
However, in order to determine the robustness of clustering
and associated features, we performed site specific analysis. As
discussed in Supplementary Material: Data Acquisition, ADHD
and ASD datasets were obtained from different sites using
different scanners, which might introduce inter-site variance and
affect the clustering accuracy. To eliminate this variance, site-
specific feature selection and clustering were individually applied
on data acquired at each site. Let S1 = {F1, F7, · · · , Fm} and
S2 = {F3, F5, · · · , Fn} represent connectivity features selected
by the proposed feature selection and clustering framework from
site 1 and site 2, respectively. The intersection between S1 and S2
was then used as the new “selected features” for the whole dataset.

Elimination of Outlier Subjects
Real-world data always suffers from different sources of noise,
which can introduce outliers in the feature space. The accuracy
of clustering depends vitally on the quality of the input data.
Accordingly, the most feasible and direct way to improve the
effectiveness of clustering is to eliminate outlier subjects from the
data.

In this study, three different clustering methods (based on
three distinct principles) were employed for revealing hidden
structures in the data. For the same input data, different
clusteringmethods will, in general, result in different partitions in
terms of the number of clusters and the membership of clusters.
It is impractical to find a single clustering method that can
handle all the different types of datasets. However, it has been
demonstrated that by combining results from different clustering
methods into a “co-association” matrix [CM, [120, 121]], true
underlying data membership can be identified with more fidelity.
Inspired by this theory, we propose a new outlier subject
elimination method by applying the union-find algorithm [122]
on the co-association matrix so that isolated outlier subjects can

be identified, considered as noise in the dataset and eliminated
from the analysis.

Given M different partitions for a given dataset with N
subjects. The N × N co-association (CM) matrix is then defined
as:

CM =
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Each element in the CM matrix is computed by:

CMij =
mij

M
(2)

Where CMij is the number of times subjects i and j are assigned
to the same cluster among theM partitions.

With the CM matrix we define subjects i and j as a connected
pair with condition CMij = 1, which indicates that subjects i and
j are always grouped together among theM partitions. Note that
CM is a symmetric matrix, thus only upper triangular (or lower
triangular) connected pairs need to be considered. A union-find
algorithm is then applied so that connected subjects are merged
together. Given N subjects and its corresponding CMmatrix, the
union-find algorithm is described next (Figure 2):

1. Initially, each subject was considered as a singleton tree with
only itself in it.

2. By looking up the CM matrix, the connected pairs were
identified.

3. For one connected pair a and b, where a belongs to tree A and
b belongs to tree B, a “find” operation was applied to find the
root of tree A and root of tree B, respectively.

4. A union operation was then applied to merge trees A and B.
5. Step 3 and 4 were repeated for all connected pairs.

The output of the union-find algorithm was a set of trees, and
those trees with only one node in it were considered as outlier
subjects.

Functional Interpretation of Selected
Connectivity Features—Enrichment
Analysis
Interpretation of large-scale neuroimaging finds, e.g., brain
connectivity, is often done by associating identified regions
or connections to previous studies. Such an approach is
developed based on subjective visual inspection or on percent of
overlap with existing maps without any statistical justification.
Therefore, it has potential risk of false positive interpretations
and overlooking additional findings. In this study, to avoid
these shortcomings, a functional interpretation method—
enrichment analysis [123]—was employed, which provides a
quantitative statistical measure on the association between
selected connectivity features and pre-defined functional brain
networks.
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FIGURE 2 | Illustration of the outlier subject elimination process (using upper

triangular connected pairs), employing the co-association matrix approach.

x1, x2, · · · , x6 are six representative subjects used in the illustration.

We define the following: (1) a background set S with m
predefined ROIs, i.e., 200 ROIs (for ADHD, AD, and ASD) or 125
ROIs (for PTSD/PCS), and (2) a group of n selected connectivity
features A = {

(

p1, q1
)

,
(

p2, q2
)

, · · · ,
(

pn, qn
)

}, where each pi
and qi represents ROIs. Two disjoint subsets of S, C and D (with
size mc and md), were generated by enrichment analysis, each of
which constitutes a known brain network identified in previous
studies. A group B was then generated with all possible ROI pairs
(i.e., connectivity features) between C and D. The size of B was
determined by K = mc × md. Let x represent the intersection
betweenA and B.The significance of x is the probability of having
x or more elements in the intersection, which can be calculated
by,

p = F (x|M, n,K) =
∑min(n, K)

i= x

(

K
i

) (

M − K
n− i

)

(

M
n

) (3)

Where M = m(m−1)
2 is the total pairs of ROIs in the

background set S. Equation (14) is the so called hypergeometric

(HG) cumulative distribution, which is equivalent to a one-tailed
Fisher’s exact test. The underlying null hypothesis of this test is
that A was randomly selected from the set of all groups of ROI
pairs with the same number of connectivities n over the same
set of ROIs. By using this method, the statistically significant
brain network-to-network (N2N) connections can be verified
and quantified with corresponding p-values.

The entire pipeline for identifying different brain-based
disorders, along with several supplementary analyses, e.g., site-
specific analysis, elimination of outlier subjects, and enrichment
analysis, is illustrated in Figure 1.

RESULTS

The optimal values of each input parameter determined for the
three clustering methods are presented in Tables 5, 6. Different
feature selection methods were compared in terms of peak
similarity obtained for the different neuropsychiatric disorders.
From Tables 7–10, it can be seen that the minimum subset
of features selected by GA consistently resulted in the highest
similarity between clusters obtained from clinical diagnoses,
fMRI-based connectivity and phenotypic variables. Using GA,
the average and maximum similarities between connectivity
and clinical diagnosis were 80.59 and 100%, respectively,
the average and maximum similarities between connectivity
and phenotypic variables were 76.72 and 80.38%, respectively,
and the average and maximum similarities between clinical
diagnosis and phenotypic variables were 73.06 and 76.62%,
respectively. SFS was less reliable than GA in that the average and
maximum similarities achieved between connectivity and clinical
diagnosis were 72.20 and 100%, respectively; and the average
and maximum similarities between connectivity and phenotypic
variables were 66.95 and 72.22%, respectively. For similarity,
the number of features determined by SFS was larger than that
selected by GA. For instance, in the PTSD/PCS dataset, although
the peak similarities obtained by using SFS and GA with OPTICS
were similar, the number of features selected by these two
methods were 84 and 15, respectively. The similarities obtained
by SFR were much lower than that obtained by SFS and GA,
and the number of clusters determined using SFR was different
from that using SFS and GA in all datasets. The convergence of
SFR, SFS, and GA were also compared. In Figure 3, the similarity
between connectivity and phenotypic variables obtained using
hierarchical clustering and different feature selection methods
was plotted as a function of the number of iterations in ADHD
dataset. The shape of the curve looks comparable between
connectivity and clinical diagnosis for the different clustering
methods, but the amplitude may be different. With GA and
SFS, a clearly step-wise convergence was observed. Although SFS
converged faster than GA, a lower similarity was achieved after
the curve became stable. With SFR, no clear convergence was
observed (i.e., the curve oscillated dramatically).

The performance of the different clustering methods varied
across the datasets. Hierarchical clustering gave higher similarity
in ADHD (Table 7) and ASD (Table 8) datasets. OPTICS
performed better in AD (Table 9) and PTSD/PCS (Table 10)
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datasets. DPC also resulted in a higher similarity in PTSD/PCS.
The computation time of DPC was longer than hierarchical and
OPTICS. For example, using 2.3 GHz Intel Core i7 processor,
the computing time for one iteration using the PTSD dataset
were as follows: hierarchical clustering took 0.27 s, OPTICS took
0.42 s, and DPC took 5.22 s, due to the fact that more input
parameters (ρ and δ) were required to be optimized in DPC
than that in hierarchical (cutting height) and OPTICS (threshold
of reachability plot). More parameters result in larger searching
space.

Site-specific analysis was applied on the ADHD dataset. We
could not apply this analysis on ASD dataset since there was only
one site that had enough samples for HC and disease subgroups
(Table 11) whereas AD and PTSD datasets were obtained on the
same scanner. For ADHD dataset, NYU and Peking had more

TABLE 5 | Estimated optimal values of each input parameter in clustering for

clinical vs. connectivity comparison.

Disease name DPC OPTICS Hierarchical

ρ δ Reachability threshold Cutting height

ADHD 46.93 1.22 1.03 1.15

AD 6.37 1.17 1.11 1.17

ASD 22.65 1.06 1.18 1.16

PTSD/PCS 12.05 1.17 0.42 1.16

TABLE 6 | Estimated optimal values of each input parameter in clustering for

phenotypic vs. connectivity comparison.

Disease name DPC OPTICS Hierarchical

ρ δ Reachability threshold Cutting height

ADHD 37.64 1.19 1.21 1.14

AD 6.00 1.18 1.18 1.16

ASD 26.54 1.02 1.11 1.16

PTSD/PCS 14.89 1.11 0.40 1.08

than 30 samples for control, ADHD-C, and ADHD-I (Table 12).
Thus, a site-specific analysis was applied on these two sites,
individually.

The peak similarity obtained between clinical diagnostic and
phenotypic clusters, between clinical diagnostic and connectivity
clusters, and between phenotypic and connectivity clusters for
site-specific analysis are shown in Table 13. Compared with
previous results presented in Table 7 using feature selection
and clustering on the entire dataset across different sites, the
similarity was increased by applying site-specific analysis for
Peking and NYU, individually. The similarity was reduced
by applying clustering on the whole datasets with commonly
selected features from these two sites.

For ADHD and AD, highest similarity was achieved between
connectivity and phenotypic clusters and the corresponding
similarity between clinical diagnostic and phenotypic clusters
was lower. On the other hand, for ASD and PTSD/PCS,
highest similarity was achieved between connectivity and clinical
diagnostic clusters. This suggests that diagnostic criteria for ASD
and PTSD/PCS are mapped well onto underlying neurobiological
clusters, while that was not the case for ADHD and AD.
Consequently, for ADHD and AD, we reassigned diagnostic
labels based on those generated by connectivity clusters to
form new neurobiologically-informed groups. In order to verify
whether this new grouping is valid, we estimated the statistical
separation of phenotypic variables based on the traditional
diagnostic grouping as well as with the new neurobiologically
informed groups. The results, shown in Figures 4, 5, indicates
that almost all p-values were smaller with the new grouping
by conducting 2-sample t-test. This suggests that when
traditional diagnostic groups do not map well onto underlying
neurobiological clusters, connectivity can be used to regroup the
subjects so that they map better onto the behavioral phenotypes.

The peak similarity obtained with and without outlier subject
elimination was compared and is shown inTable 14. Consistently
higher similarity was achieved by removing the identified outlier
subjects from the dataset. Moreover, in AD dataset, the number
of clusters identified by hierarchical clustering was changed from

TABLE 7 | Peak similarity (highlighted), corresponding number of features, and number of clusters obtained using SFR, SFS, and GA with different clustering methods for

ADHD dataset.

Feature selection

method

Clustering method Clinical vs. phenotypic Clinical vs. connectivity Phenotypic vs. connectivity

Peak Sim.

(%)

# of

features

# of

clusters

Peak sim.

(%)

# of

features

# of

clusters

Peak sim.

(%)

# of

features

# of

clusters

SFR DPC 66.19 2 3 48.91 3 2 49.94 3 2

OPTICS 64.19 2 2 56.10 4 3 58.22 4 3

Hierarchical 61.41 3 2 51.38 195 2 51.84 18 2

SFS DPC 66.19 2 3 58.36 37 3 68.30 17 3

OPTICS 64.19 2 2 58.40 13 3 66.46 26 3

Hierarchical 67.23 3 3 59.32 54 3 69.79 51 3

GA DPC 73.51 4 3 62.48 72 3 63.83 63 3

OPTICS 70.52 3 3 64.44 122 3 64.42 25 3

Hierarchical 69.29 5 3 69.34 83 3 74.61 121 3
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TABLE 8 | Peak similarity (highlighted), corresponding number of features, and number of clusters obtained using SFR, SFS, and GA with different clustering methods for

AD dataset.

Feature selection

method

Clustering method Clinical vs. phenotypic Clinical vs. connectivity Phenotypic vs. connectivity

Peak sim.

(%)

# of

features

# of

clusters

Peak sim.

(%)

# of

features

# of

clusters

Peak sim.

(%)

# of

features

# of

clusters

SFR DPC 64.46 2 4 56.68 61 4 57.99 175 3

OPTICS 64.16 2 3 66.35 84 4 60.48 84 4

Hierarchical 64.46 2 4 67.63 241 4 57.20 241 4

SFS DPC 57.05 3 4 59.26 2 4 56.30 4 4

OPTICS 65.93 4 4 64.03 20 4 57.58 12 4

Hierarchical 65.14 4 5 64.82 155 4 60.26 193 5

GA DPC 62.53 3 4 63.52 44 4 74.55 97 4

OPTICS 65.93 4 4 64.23 116 4 76.75 58 4

Hierarchical 65.14 4 5 66.65 74 4 73.28 124 5

TABLE 9 | Peak similarity (highlighted), corresponding number of features, and number of clusters obtained using SFR, SFS, and GA with different clustering methods for

ASD dataset.

Feature selection

method

Clustering method Clinical vs. phenotypic Clinical vs. connectivity Phenotypic vs. connectivity

Peak sim.

(%)

# of

features

# of

clusters

Peak sim.

(%)

# of

features

# of

clusters

Peak sim.

(%)

# of

features

# of

clusters

SFR DPC 66.67 9 2 58.91 5 3 61.23 5 3

OPTICS 74.75 10 3 62.14 10 3 64.53 99 3

Hierarchical 75.81 9 3 61.04 681 2 60.64 336 2

SFS DPC 66.20 2 2 64.41 33 3 63.79 42 3

OPTICS 76.00 8 3 64.50 144 3 61.75 2 3

Hierarchical 76.00 5 3 64.79 85 3 65.52 143 3

GA DPC 75.85 5 3 72.45 60 3 68.98 50 3

OPTICS 76.46 5 3 79.18 103 3 74.47 70 3

Hierarchical 76.63 5 3 89.20 101 3 75.66 54 3

TABLE 10 | Peak similarity (highlighted), corresponding number of features, and number of clusters obtained using SFR, SFS, and GA with different clustering methods

for PTSD/PCS dataset.

Feature selection

method

Clustering method Clinical vs. phenotypic Clinical vs. connectivity Phenotypic vs. connectivity

Peak sim.

(%)

# of

features

# of

clusters

Peak sim.

(%)

# of

features

# of

clusters

Peak SIM.

(%)

# of

features

# of

clusters

SFR DPC 63.82 6 2 66.67 9 2 61.38 9 2

OPTICS 69.20 4 3 66.67 16 2 76.15 18 3

Hierarchical 61.89 6 2 66.67 6 2 57.31 4 2

SFS DPC 74.25 3 3 73.01 2 3 70.40 4 3

OPTICS 69.76 7 3 100 84 3 66.39 2 3

Hierarchical 69.35 3 3 75.30 2 3 72.22 2 3

GA DPC 74.25 3 3 100 40 3 77.25 25 3

OPTICS 76.15 4 3 100 15 3 80.38 8 3

Hierarchical 70.15 5 3 77.65 2 3 64.70 1 3

5 to 4 with outlier elimination (highlighted in Table 14), which
matched with the grouping obtained using clinical diagnosis. The
data in ADHD and ASD datasets comprised of data acquired at

different sites using different scanners, which might explain the
fact that the number of outliers identified in ADHD and ASD
were generally greater than the other two datasets.
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FIGURE 3 | Similarity between connectivity and phenotypic variables obtained

from different iterations using hierarchical clustering and different feature

selection methods: (A) SFR, (B) SFS, and (C) GA.

DISCUSSION

In this work, we have proposed a general analysis pipeline
for characterizing different neuropsychiatric disorders using
unsupervised learning methods. Our results suggest that
neurobiological and phenotypic biomarkers could potentially
be used as an aid by the clinician, in additional to currently
available diagnostic standards, to improve diagnostic precision
and identify diagnostic sub-groups. First, we discuss the selected
brain connectivity features and phenotypic variables for each
disorder and compare our results with previous studies. Second,
we elaborate on the implications of results obtained within
specific sites in comparison to those obtained from the entire
ADHD dataset. Third, we discuss the reassignment of diagnostic

TABLE 11 | Number of subjects provided by each site in the ASD sample.

Site Name HC Autism Asperger’s

Caltech 19 13 0

CMU 13 14 0

Pitt 27 30 0

UCLA 45 44 0

SDSU 23 2 5

Trinity 24 10 6

NYU 105 53 21

TABLE 12 | Number of subjects provided by three sites in the ADHD sample.

Site name HC ADHD-C ADHD-I

NYU 98 73 43

Peking 116 29 49

KKI 58 16 5

labels based on those generated by connectivity clusters.
Finally, we delineate the role of outlier subject elimination in
unsupervised leaning methods as applied to neuroimaging.

Connectivity Features Important for
Clustering
After applying clustering, the selected connectivity features
were split into two networks, i.e., (1) a network in which
functional/effective connectivities and temporal variability of
constituent paths were significantly (p < 0.05, FDR corrected)
larger in the control group, and (2) a network in which
functional/effective connectivities and temporal variability of the
constituent paths were significantly (p < 0.05, FDR corrected)
larger in the disease group. Here, “disease group” refers to
all pathological subgroups combined. This was done since
all disease groups have two or more pathological sub-groups
and it becomes increasingly complex to interpret all pairwise
differences. Then, these two networks were mapped back to the
image space and overlaid on an anatomical glass brain (using
BrainNet Viewer [124]) for the visualization, respectively. The
identified brain networks were then qualitatively interpreted
and compared with previous studies using enrichment analysis
[123].

Intrinsic connectivity networks (ICNs) denote groups of brain
regions that show correlated spontaneous activities at “resting”
state [125]. It has been shown that ICNs reflect strong coupling of
spontaneous fluctuations in ongoing activity and remain robust
under different mental states, e.g., sleep, loss of consciousness,
etc. [126, 127]. ICNs provide a common neurofunctional
framework for investigating cognitive dysfunction in different
neuropsychiatric disorders. There are many stable ICNs that
have been identified in the human brain so far. Five of
them—default mode network (DMN), visual network (VN),
basal ganglia network (BGN), sensory motor network (SMN),
and the semantic cognition and attention (SCAN)—have been
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TABLE 13 | Similarity achieved using data from individual sites and for the whole dataset using features commonly selected by NYU and Peking.

Site name Clinical vs. phenotypic Clinical vs. connectivity Phenotypic vs. connectivity

Hierarchical OPTICS DPC Hierarchical OPTICS DPC Hierarchical OPTICS DPC

NYU 74.32 75.87 77.02 100 100 79.38 87.02 87.02 74.55

Peking 78.99 66.67 82.18 74.66 89.02 88.83 82.32 89.84 88.42

Whole dataset 63.27 65.14 66.95 62.92 58.37 54.69 71.54 59.38 54.79

FIGURE 4 | Statistical significance (p-value) of selected phenotypic/genotypic variables with both the traditional clinical diagnostic grouping and the new connectivity

grouping. The results are shown here for the ADHD dataset. Logarithmic scale is used for the y-axis of p-values.

demonstrated to be particularly important for understanding
higher cognitive function and dysfunction, and provide useful
models for identifying rs-fMRI connectivity patterns. Below,
we discuss the significance of each of these networks to
provide a context for presenting alterations in the interactions
within and between these networks observed in neuropsychiatric
disorders.

The DMN is one of the most well-known ICNs, which is a
distributed network anchored in the posterior cingulate cortex
[PCC], medial prefrontal cortex [mPFC], medial temporal lobe
[MTL], precuneus, anterior cingulate cortex [ACC], inferior
parietal lobe [IPL], and medial orbital gyrus [MOG] [128]. The
PCC, hippocampus, and angular gyrus are typically associated
with episodic memory retrieval [129, 130], autobiographical
memory [131], and semantic memory related to internal thought
[132]. mPFC has been demonstrated to be associated with self-
related and social cognitive processes [133], value-based decision
making [134], and emotion regulation [135]. Together, the
entire DMN comprises an integrated system involving episodic
memory, autobiographical memory, and self-related mental
processes.

The VN [136] involves the occipital and bilateral temporal
regions including the middle occipital gyrus, inferior temporal

gyrus [ITG], fusiform gyrus, and cuneus, which is involved in
visual processing and mental imagery [137, 138]. The middle
occipital gyrus, ITG, and fusiform gyrus are primarily involved
in the higher functions of vision processing, e.g., distinguishing
objects among different categories, face recognition, visual words
recognition, representation of complex object features, etc. [139,
140]. The cuneus has been demonstrated to be involved in basic
visual processing, which receives visual information from retina
[141].

The BGN is predominantly located in the basal ganglia
including the striatum (which is subdivided into the caudate
nucleus and putamen), globus pallidus or pallidum substantia
nigra and thalamus [142]. The BGN is associated with a variety
of functions including control of voluntary motor movements
[143], procedural learning, eye movements [144], cognition
[145], emotion [146], etc.

The SMN involves the precentral gyrus, postcentral gyrus,
cerebellum, posterior insula, and part of the frontal gyrus
corresponding to the primary sensory motor cortex and
supplementary motor area [SMA] [147, 148]. Studies have
indicated that this network is processing somatosensory stimuli,
executing motor movements and sensorimotor integration [149,
150].
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FIGURE 5 | Statistical significance (p-value) of selected phenotypic/genotypic variables with both the traditional clinical diagnostic grouping and the new

connectivity-based grouping. The results are shown here for the AD dataset. Logarithmic scale is used for the y-axis of p-values.

TABLE 14 | Comparison of peak similarity obtained with and without elimination of outlier subjects.

Disease name Clustering method With outlier subjects removed Including all subjects

Clinical vs. connectivity Phenotypic vs. connectivity Clinical vs.

connectivity

Phenotypic vs.

connectivity

p p (%) sim k P p (%) sim k sim k sim k

ADHD DPC 54 11.09 69.72 3 38 7.80 64.86 3 62.48 3 63.83 3

OPTICS 69.79 3 68.92 3 64.44 3 64.42 3

Hierarchical 69.62 3 75.66 3 69.34 3 74.61 3

AD DPC 14 14.58 65.33 4 9 9.38 76.70 4 63.52 4 74.55 4

OPTICS 65.88 4 77.75 4 64.23 4 76.75 4

Hierarchical 69.68 4 78.38 4 66.65 5 73.28 5

ASD DPC 15 3.30 72.65 3 49 10.79 71.95 3 72.45 3 68.98 3

OPTICS 79.83 3 73.63 3 79.18 3 74.47 3

Hierarchical 89.84 3 76.05 3 89.20 3 75.66 3

PTSD DPC 3 3.45 100 3 5 5.57 77.57 3 100 3 77.25 3

OPTICS 100 3 81.54 3 100 3 80.38 3

Hierarchical 80.60 3 72.54 3 77.65 3 64.70 3

p, number of outliers; k, number of clusters; sim, clustering similarity. In AD dataset, the number of clusters identified by hierarchical clustering was changed from 5 to 4 with outlier

elimination (highlighted), which matched with the grouping obtained using clinical diagnosis.

The SCAN is defined as regions associated with the semantic
cognition network and attention network, which is a network
of lateral structures in the frontal and parietal cortices, as well
as some temporal regions. The semantic cognition network is
primarily made up of three regions, Broca’s area, Wernicke’s area,
as well as parts of the middle temporal gyrus [MTG] [151, 152].
Broca’s area is generally defined as comprising Brodmann areas
44 and 45. Area 44 (the posterior part of the inferior frontal

gyrus [IFG]) is involved in phonological processing and language
production whereas area 45 (the anterior part of the IFG) engages
in the semantic aspects of language. Together, Broca’s area plays
an important role in processing of verbal information [153].
Wernicke’s area is traditionally thought to be located in the
posterior part of the superior temporal gyrus [STG], which is
involved in the comprehension or understanding of written
and spoken language [154]. Some studies have showed that the
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MTG is involved in the retrieval of lexical syntactic information
[155]. The attention network is commonly segregated into two
distinct networks: a bilateral dorsal attention network (DAN),
which includes the dorsal frontal and parietal cortices, and the
ventral attention network (VAN), largely right-lateralized, which
includes the ventral frontal and parietal cortices [129, 156].
The DAN has been associated with goal-directed, top-down
attention processes in inhibitory control, working memory and
response selection, whereas the VAN is related with salience
processing and mediates stimulus-driven, bottom-up attention
processes [157]. Moreover, it is relevant to note that dorsal and
ventral systems appear to interact not only during cognitive tasks
[158, 159] but also during spontaneous activity [160]. Previous
literature suggests that semantic cognition and attention are
intimately related. This is also borne out by the fact that many
disorders such as ADHD and ASD have simultaneous deficits in
semantic cognition and attention. Therefore, we considered this
as one network.

A qualitative as well as quantitative interpretation of
alterations of these INCs and other related brain regions
in different neuropsychiatric disorders are discussed below.
For each pathology, we chose the features that gave us
highest similarity between clusters obtained from clinical labels,
connectivity features and phenotypic features. For ADHD and
AD, highest similarity was obtained between connectivity and
phenotypic clusters while for ASD and PTSD/PCS, highest
similarity was obtained between clinical labels and connectivity
clusters. Therefore, the features obtained in these two different
scenarios have different implications. For ADHD and AD data
sets, it suggests that traditional clinical diagnostic grouping
may not neatly map onto neurobiological and neurobehavioral
clusters. This may be because of uncertainty in clearly identifying
differences between disease sub-groups in ADHD (ADHD-C
and ADHD-I) and AD (EMCI, LMCI, and AD). Contrarily,
for ASD and PTSD/PCS data sets, it suggests that traditional
clinical diagnostic grouping may in fact map well onto at least
neurobiological clusters. These facts are borne out by computing
the purity of clusters obtained from connectivity features for
disease sub-groups within each data set. To measure cluster
purity, the clusters obtained using connectivity features were
regrouped using the diagnostic label, and each subject was
assigned to majority class in the current cluster. Then the
accuracy was measured by counting the number of correctly
assigned subjects within each cluster and took the average. The
cluster purity for ADHD, AD, ASD, and PTSD/PCS were 0.73,
0.75, 0.94, and 1.00, respectively. It can be seen that ASD and
PTSD/PCS data sets had high purity while for ADHD and AD,
the purity of clusters for disease subgroups was qualitatively
lower.

ADHD

One hundred and twenty-one relevant connectivity features
were selected by GA and hierarchical clustering (since this
combination gave highest similarity between connectivity and
phenotypic features), which were 26 SFC, 14 vDFC, 53 SEC,
and 28 vDEC. These features include connections in all lobes
of the brain (Figure 6). With enrichment analysis, two N2N

FIGURE 6 | (A) SFC; (B) vDFC; (C) SEC; (D) vDEC features. selected by GA

and hierarchical (ADHD). Selected features were split into two groups, i.e., (1)

control > disease (ADHD-C and ADHD-I) and (2) disease > control. DMN,

Default mode network; VN, Visual network; BGN, Basal ganglia network; SMN,

Sensory motor network; SCAN, Semantic cognition and attention network.

interactions were selected for SFC, i.e., the interactions within the
BGN and the interaction between the VN and SMN, including
connections between the cerebellum and occipital lobe, between
the insula and fusiform, and between the caudate and thalamus.
In addition, two N2N interactions were selected for the SEC, i.e.,
from the BGN to VN, and from the SCAN to SMN, including
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TABLE 15 | Network-to-network interactions selected by enrichment analysis for

ADHD dataset.

Feature type Comparison P-value Selected features

SFC Control > Disease 0.006 BGN—BGN

SFC Disease > Control 0.04 VN—SMN

SEC Control > Disease 0.03 BGNVN

SEC Control > Disease 0.007 SCANSMN

connections from the caudate to occipital lobe and ITG, from the
IFG and MFG to posterior insula, from the IFG to postcentral
gyrus, and from the STG to cerebellum (Table 15).

Most of the rs-fMRI studies have demonstrated atypical
functional activations in the frontal, temporal, parietal lobes,
and cerebellar regions [161–163] in ADHD. Multiple studies
have found aberrant functional connectivity among the brain
regions of the DMN, SCAN, and BGN [164–167]. Abnormal
functional activations in the orbitofrontal cortex [OFC] have
been suggested to influence behavioral inhibition in children
with ADHD [168]. Resting-state fMRI studies have frequently
reported disrupted functional connectivity between the ACC and
PCC in ADHD [169, 170]. Significantly decreased activations
have been reported in the PFC, SPL, and IFG in ADHD,
during multiple cognitive performance tasks and in resting-
state [163, 171, 172]. One fMRI study conducted in adults with
childhood ADHD showed reduced activations in bilateral IFG,
left parietal lobe, caudate, and thalamus [162]. Another study
found reduced functional connectivity between thalamus and
other BGN areas (e.g., putamen, caudate) with ADHD [167].
Some studies have also identified reduced activations in the IFG
[173] and STG [174] in ADHD patients. Kessler et al. [175]
observed reduced connectivity between the SCAN and SMN
and increased connectivity within the VN by applying joint
independent component analysis on the ADHD-200 sample. On
the other hand, increased functional connectivity in the DMN,
BGN, SMN, and VN has been observed in some studies [176,
177]. Significantly increased functional connectivity between
the ACC and the thalamus, cerebellum, and insula have been
shown during resting-state in children with ADHD, compared
to controls [170, 178, 179]. Li et al. [166] found increased
connectivity between the right pulvinar and occipital regions,
during a visual sustained attention task-based fMRI study.
Hale et al. [180] also observed reduced activations in the VN
and DMN, during letter and location judgment tasks. The
features selected by GA for maximizing the similarity between
connectivity and phenotypic clusters and the subset of significant
N2N interactions determined by enrichment analysis are in
agreement with previous literature implicating the very same
regions and connections in ADHD.

AD

Fifty-eight features were selected by GA and OPTICS (since
this combination gave highest similarity between connectivity
and phenotypic features), including 32 vDFC features and 26
SFC features. Most of features were related to the DMN, VN,
SMN, and SCAN (Figure 7). With enrichment analysis, two

FIGURE 7 | (A) SFC; (B) vDFS features. selected by GA and hierarchical (AD).

Selected features were split into two groups, i.e., (1) control > disease (AD,

LMCI and EMCI) and (2) disease > control. DMN, Default mode network; VN,

Visual network; BGN, Basal ganglia network; SMN, Sensory motor network;

SCAN, Semantic cognition and attention network.

TABLE 16 | Network-to-network interactions selected by enrichment analysis for

AD dataset.

Feature type Comparison P-value Selected features

SFC Disease > Control 0.036 DMN—SMN

SFC Control > Disease 0.01 DMN—VN

vDFC Control > Disease 0.01 SCAN—SCAN

vDFC Disease > Control 0.04 DMN—SCAN

N2N interactions were selected for the SFC, i.e., the interaction
between theDMNand SMN, and that between theDMNandVN,
including connections between the ACC and middle occipital
gyrus, between the PFC and fusiform, between the IPL and
ITG, between the SFG and insula, between the hippocampus
and SMA, between the cerebellum and SFG, and between the
cerebellum and PFC. In addition, two N2N interactions were
selected for vDFC, i.e., the interactions within the SCAN, and
between the DMN and SCAN, including connections between
the MTG and STG, between the PFC and IFG, between
the precuneus and IFG, between the precuneus and MTG,
between the PFC and STG, and between the MTG and IPL
(Table 16).

Several previous studies have indicated dysfunctions in
different regions of the DMN, VN, SMN and SCAN in the AD
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and MCI populations [181, 182]. Some studies have observed
decreased connectivity in the DMN coupled with an increased
connectivity within prefrontal regions [183–185]. Significant
alterations of connectivity in the MTG, PCC, hippocampus,
and angular gyrus, have been observed in AD [130, 186]. The
dysfunction in the MTG, which is referred to as a central
hub of the SCAN [187], is suggested as an early feature of
AD [188]. A lesser degree of the MTG activation has been
observed in MCI [189, 190] compared to controls. The medial
parietal cortex, including the PCC and precuneus, are selectively
vulnerable to amyloid deposition in AD [187], and studies of
cortical metabolism using positron emission tomography and
single photon emission computed tomography in AD suggest
that abnormalities in the PCC and precuneus are early features
of AD [188]. A voxel-based study showed that AD patients had
both decreased activity of the rightMFG and an increased activity
of the right parietal cortex [191]. Reduced connectivity in the
temporal lobe was also observed in different rs-fMRI studies [182,
184]. Multiple studies have suggested that the insula is involved
in AD [192–194] and some of the behavioral abnormalities in AD
may reflect insular pathology. Brier et al. [38] observed reduced
anti-correlations between the DMN and SMN, and between the
DMN and SCAN, during a rs-fMRI study. Li et al. [195] also
found aberrant connectivity between the DMN and SCAN, as
well as between the DMN and SMN. These previous studies seem
to support our findings regarding features which are important
for unsupervised clustering of control, EMCI, LMCI and AD
groups.

ASD

Seventy-six features were selected using GA and hierarchical
(since this combination gave highest similarity between
connectivity features and clinical diagnosis)−30 SFC, 11 vDFC,
27 SEC, and 9 vDEC—involving the frontal, parietal, temporal
lobes, and cerebellar regions (Figure 8). With enrichment
analysis, two N2N interactions were selected for the SFC,
i.e., the interaction within the DMN, and between the DMN
and VN, including connections between the PFC and angular
gyrus, between the SFG and angular gyrus, between the
ACC and parahippocampal gyrus, between the MOG and
parahippocampal gyrus, between the ACC and fusiform,
between the SFG and ITG, and between the ACC and ITG.
One N2N interaction was selected for the vDFC, i.e., the
interaction between the BGN and SCAN, including connections
between the caudate and MTG, and between the thalamus
and STG. In addition, one N2N interaction was selected for
the SEC, i.e., from the DMN to SMN, including connections
from the MOG to precentral, from the hippocampus to
posterior insula, and from the precuneus to cerebellum
(Table 17).

Several recent studies have observed abnormal connectivity in
the DMN, SCAN, SMN, BGN and VN in the pathophysiology
of ASD [196, 197]. A recent meta-analysis showed alterations in
the MTG, hippocampus, as well as the posterior medial cortex
in ASD [198], which were suggested to be related to deficits
in social information processing. It has been shown that the
PCC and mPFC in ASD are hypoactive compared with healthy

FIGURE 8 | (A) SFC ; (B) vDFC; (C) SEC; (D) vDEC features. selected by GA

and hierarchical (ASD). Selected features were split into two groups, i.e., (1)

control > disease (autism and asperger’s) and (2) disease > control. DMN,

Default mode network; VN, Visual network; BGN, Basal ganglia network; SMN,

Sensory motor network; SCAN, Semantic cognition and attention network.

controls [199]. Decreased connectivity between the PCC and
SFG, the PCC and temporal lobes, as well as the PCC and
parahippocampal gyri were observed, which were associated with
poor social skills [200]. Dysfunction in the SCAN has been
shown to be related to deficits in language and communication
in individuals with ASD. Reduced activation and functional
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TABLE 17 | Network-to-network interactions selected by enrichment analysis for

ASD dataset.

Feature type Comparison P-value Selected features

SFC Control > Disease 0.033 DMN—DMN

SFC Control > Disease 0.015 DMN—VN

vDFC Control > Disease 0.04 BGN—SCAN

SEC Disease > Control 0.025 DMNSMN

connectivity in the frontal-temporal SCAN were observed by
Mody et al. [201]. A recent rs-fMRI study found a marked loss
of functional connectivity between the right cerebellar region
and regions in the SCAN [202]. Weaker connection between
the SMA and ventral premotor cortex was found in the ASD
group compared with controls, which has been hypothesized to
underlie the initiation of speech motor actions [203]. Decreased
connectivity between the BGN and the occipital region and
prefrontal cortical regions was also found by Prat et al. [204].
A meta-analysis identified the posterior insula as a consistent
locus of hypoactivity in ASD [199]. Other fMRI studies have
also suggested that the insula is one possible key dysfunctional
area in ASD [205]. In contrast, a recent rs-fMRI study [206]
observed stronger functional connectivity within several large-
scale brain networks in children with ASD compared with
controls, including the DMN, SCAN, SMN, BGN, and VN. It
has been suggested that developmental trajectories in ASD can
be both heterogeneous and aberrant compared to neurotypicals
and hyper- or hypo-connectivity is observed depending on when
the data is acquired during development [206]. Our results are in
broad agreement with previous fMRI literature in ASD discussed
above.

PTSD/PCS

Fifteen features were selected by GA and OPTICS (since this
combination gave the highest similarity between connectivity
features and clinical diagnosis); 2 SFC, 5 vDFC, 2 SEC, and
6 vDEC. These features were mainly located in the DMN,
BGN, and SCAN (Figure 9). With enrichment analysis, one
N2N interaction between the DMN and BGN was selected for
both the SFC and vDFC. This involved connections between
the ACC and caudate, and between the parahippocampal
gyrus and caudate. In addition, one N2N interaction from the
DMN to BGN was selected for the vDEC, which included
the connection from the parahippocampal gyrus to caudate
(Table 18).

Several resting-state studies of PTSD have showed aberrant
connectivity within brain structures associated with the DMN
[207–209]. The parahippocampal gyri and hippocampus are
critical structures in the DMN, which have been shown to
be essential for memory functions, especially memorizing facts
and events, and memory consolidation [210]. A previous rs-
fMRI study found decreased functional connectivity in the
hippocampal regions in PTSD patients [211]. The BGN has also
been reported to be associated with PTSD [212–214]. PTSD has

FIGURE 9 | (A) SFC; (B) vDFC; (C) SEC; (D) vDEC features. selected by GA

and hierarchical (PTSD/PCS). Selected features were split into two groups, i.e.,

(1) control > disease (PTSD and PTSD/PCS) and (2) disease > control. DMN,

Default mode network; VN, Visual network; BGN, Basal ganglia network; SMN,

Sensory motor network; SCAN, Semantic cognition and attention network.
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TABLE 18 | Network-to-network interactions selected by enrichment analysis for

PTSD dataset.

Feature type Comparison P-value Selected features

SFC Disease > Control 0.001 DMN—BGN

vDFC Control > Disease < 0.001 DMN—BGN

vDEC Control > Disease 0.016 DMNBGN

been linked with abnormal activation of different BGN regions,
brain stem, and limbic regions compared with control groups
[26, 215, 216]. The connectivity between the DMN and BGN and
between the DMN and VN have been observed to be impacted in
PTSD in many functional connectivity studies [217, 218]. Lanius
et al. [217] found increased connectivity between the ACC and
caudate, the PCC, the right parietal lobe, and the right occipital
lobe, during a rs-fMRI study using subjects with PTSD. Stark et
al. found changes in connectivity between the DMN and BGN,
(e.g., connections between the ACC and caudate, between the
parahippocampal gyri and caudate), by applying a systematic,
quantitative meta-data analysis on colleagues previous studies.
The SCAN has also been demonstrated to be linked to PTSD.
Reduced connectivity was observed in the MTG, MFG and
several BGN regions in the PTSD group, compared with controls
[219]. Yin et al. [220] also found reduced connectivity in theMTG
and lingual gyrus, during a rs-fMRI study. It is interesting to
note that increased static connectivity and reduced variability of
dynamic connectivity between the hippocampal formation and
BGN regions such as the caudate has been recently reported
in PTSD and PCS [84, 87] and our results seem to confirm
these findings and show that those aberrations are important for
unsupervised clustering of subjects into these groups.

From above discussions, it can be seen that for each individual
neuropsychiatric disorder, connectivity features selected by GA
with optimal clustering method are consistent with previous
studies, which suggest the effectiveness of our general pipeline for
identifying different brain-based disorders using unsupervised
learning.

Phenotypic Features Important for
Clustering
The phenotypic variables important for clustering were selected
for each psychiatric disease. Below, we discuss the relevance
of these variables in the context of existing literature on those
measures.

ADHD

Four phenotypic variables were selected by GA and
DPC including ADHD index score, Inattentive score,
Hyper/Impulsive score (all are subscales in ADHD-RS),
and FIQ in intelligence scale. ADHD-RS has been considered
as an effective clinical diagnostic tool for assessing the severity
of ADHD in children and adolescents [221, 222]. It gathers
information on the severity and frequency of symptoms, the
establishment of childhood onset of symptoms, the chronicity
and pervasiveness of symptoms, and the impact of symptoms
on major life activities. Intelligence scale has been demonstrated

to be helpful in predicting symptomatology and outcome in
children with ADHD [223]. A meta-analysis showed that FIQ
was lower in adults with ADHD compared to HC [63].

AD

Three phenotypic variables, i.e., MSE, CDR, and FAQ, and
one genotypic variable, i.e., APOE were selected by GA and
OPTICS. APOE is considered as the major genetic risk factor for
AD [69]. Although the presence of APOE does not necessarily
entail the development of AD, this genetic isoform probably
accelerates the rate of AD conversion and progression [224]. The
MMSE is the most commonly used instrument for screening
memory problems and other deficits related to cognitive aging.
It has been widely used to screen for dementia [64]. CDR is
a global scale developed to clinically denote the presence of
AD and stage its severity [225]. Several methods have been
derived based on CDR to identify AD accurately; [226]. FAQ is a
standardized assessment of instrumental activities of daily living,
which delineates the clinical distinction between MCI and AD
[227].

ASD

Five phenotypic variables were selected including
ADOS_TOTAL, ADOS_COMM and ADOS_SOCIAL (all
makeup ADOS test), FIQ in intelligence scale, and ADI-
R_VERBAL in ADI_R test. ADOS has been extensively used in
the clinic for diagnosing ASD [228, 229]. It consists of a series
of structured and semi-structured presses for an interaction of
specific target behaviors associated with particular tasks and
by general ratings of the quality of behaviors. Further, several
studies have observed higher VIQ and FIQ in ASD compared to
neurotypicals; [230]. ADI-R is a structured interview conducted
with the parents of the referred individual and covers the
subject’s full developmental history [231]. The communication
and language score, as one of the three content areas in ADI-R,
is useful in assessing the presence and severity of delay or total
lack of language.

PTSD/PCS

Four phenotypic variables—SDC correct, ZDS, CES, and LEC—
were selected by GA and OPTICS. SDC is a test of psychomotor
performance, visual-motor coordination, sustained attention,
and motor and mental speed, which has been shown to be
related to PTSD [232]. ZDS is a short self-administered survey
to quantify the depressed status of a patient. Burriss et al.
[233] showed that PTSD was associated with general learning
and memory impairments, and depression was considered as
a mediator of these deficits. In addition, Dretsch et al. [234]
revealed that depressive symptoms in individuals with PTSD
account for working memory impairments. CES was constructed
to measure the subjective report of wartime stressors experienced
by combatants [235]. It has been demonstrated that CES is a
useful tool for identifying factors associated with PTSD [236,
237]. LEC, a measure of exposure to potentially traumatic events,
was developed for assisting with screening of PTSD as well. In
a clinical sample of combat veterans, a significantly correlated
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relationship between LEC and PTSD symptoms was observed
[238].

It can be seen from the discussion above that the phenotypic
(and genotypic in case of AD) variables selected by GA for
maximizing the similarity of clusters obtained from them and
from connectivity features indicates that they are clinically
meaningful and relevant to the behavioral deficits observed in
each disorder.

Site-Specific Analysis
Modern machine learning systems often integrate data from
several different sources. Usually, these sources provide data of
a similar type but collected under different circumstances. For
example, the ADHD dataset used in this study was collected
from different sites. Although fMRI images provided by these
sites had similar qualities, these images were obtained from
different scanners with different scanning parameters. The
accuracy of machine learning algorithms can be affected by
the heterogeneity of input data. To address this issue, we
performed a site-specific analysis. By applying feature selection
and clustering on data obtained from each individual site, the
cluster similarity was increased considerably (see Tables 7, 13).
However, as when we applied clustering on whole dataset with
commonly selected features from individual sites, the similarity
was reduced. Due to inter-site variance, it is difficult for us
to translate high accuracy obtained for individual site into the
whole dataset. It also affects the diagnostic precision obtained
from brain connectivity measures. This calls for data acquisition
standards and homogenization of data acquired from different
scanners.

Connectivity-Based Reassignment of
Diagnostic Labels
Many brain-based disorders are highly heterogeneous, and
categorization of subgroups within many disorders is yet to
be completely established. Traditionally, brain-based disorders
are diagnosed by clinical interviews associated with different
behavioral assessments. However, it is widely acknowledged that
current clinical criteria are insufficient to clearly identify most of
the brain-based disorders, separate them from healthy subjects
and identify sub-groups within them. Therefore, it is necessary
to develop brain imaging based models for understanding how,
precisely, neural circuits generate flexible behaviors and their
impairments give rise to psychiatric symptoms [10]. In this
study, we used unsupervised learning algorithms to discover
brain connectivity-based clusters, which were not limited to
existing diagnostic criteria. Instead, it focused on separating
subjects into isolated clusters with maximized inter-cluster
variance and minimized intra-cluster variance. After clustering,
we reassigned diagnostic labels based on those generated by
connectivity clusters. Compared with clinical diagnostic groups,
the neurobiologically-informed groups provided better mapping
from subjects to the behavioral phenotypes. This result indicates
that it might be possible to view brain-based disorders from
the perspective of brain connectivity measures, establishing
neuroimaging-based biomarkers for different neuropsychiatric
disorders.

Outlier Subject Elimination
The overarching aim of healthcare is personalized medicine.
However, basing individualized treatments on brain imaging
characteristics is in the nascent stages, i.e., some subjects will
deviate considerably from the normative population distribution
and it becomes easier to assess population level characteristics
when such subjects are eliminated from the analysis. As shown
in this study, with the proposed subject outlier elimination
process, the precision of clustering was improved. Note that,
the inter-individual variability may be introduced not just by
the variability in the underlying neuropathology, but also by
non-neural sources of variance such as different scanners and/or
different scanning parameters. Until a standard data acquisition
process is established, outlier subject elimination will serve
to homogenize the data and make better inferences at the
population level.

CONCLUSION

Many neuropsychiatric disorders are conventionally diagnosed
based on clinical interviews and behavioral assessments. Inherent
limitations of specific measures and clinical judgment contribute
to a far from perfect process. Therefore, it is necessary to establish
neuroimaging-based biomarkers to improve diagnostic precision
and accuracy. Rs-fMRI has been used as a promising technique
for characterization and classification of different disorders.
However, these approaches are besieged with methodological
issues such as (i) a priori choice of clusters needed in k-means,
(ii) a stopping criterion needed in hierarchical clustering, (iii)
the large dimensionality of imaging data necessitates some type
of dimensionality reduction for clustering to work properly and
this step is either not carried out, or carried out by preselecting
features not from the structure in the data, but by some external
considerations such as previous findings in a given disorder,
and (iv) the clusters obtained from imaging data are seldom
compared by those obtained from clinical diagnostic criteria or
behavioral phenotypes.

To address these four issues, a general pipeline was derived on
identifying different brain-based disorders using unsupervised
clustering methods. In addition, site-specific analysis and
elimination of outlier subjects were also applied to improve
clustering accuracy. Three selected clustering methods were
adopted on three types of features: (1) fMRI connectivity
measures, (2) clinical diagnostic labels, and (3) phenotypic
variables. GA based feature selection method was also applied
to improve clustering accuracy. The accuracy of the clustering
and feature selection was assessed by computing the similarity
of clusters between all three types of features. The effectiveness
of the proposed pipeline was verified on five different disorders:
ADHD, AD, ASD, PTSD, and PCS. For ADHD and AD, highest
similarity was achieved between connectivity and phenotypic
clusters, whereas for ASD and PTSD/PCS, highest similarity was
achieved between connectivity and clinical diagnostic clusters.
These results suggest that neurobiological and phenotypic
biomarkers could potentially be used as an aid by the clinician,
in addition to currently available subjective markers, to improve
diagnostic precision.
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The data and source code used in this work are presented
elsewhere [239]. They can also be downloaded from GitHub
repository: https://github.com/xinyuzhao/identification-of-
brain-based-disorders.git.

FUTURE RECOMMENDATIONS

Here we discuss some directions in which the current work could
be extended. First, we have applied the proposed pipeline to four
different disorders. It may be worth evaluating its performance
on various other disorders such as Schizophrenia, Depression
etc. Second, deriving a consensus clustering estimate from
various clustering algorithms may improve the correspondence
between diagnostic, imaging and phenotypic clusters. Third,
the current study used cross-sectional data and hence cannot
make inferences on whether unsupervised clustering can
infer mechanisms that may cause sub-clusters in disorders.
However, future datasets obtained using longitudinal designs
may investigate this aspect. Fourth, the sample sizes used in
AD and PTSD datasets are smaller compared to those used in
ASD and ADHD datasets. We believe that demonstration of
our method on samples of various sizes is a strength. However,
specific inferences regarding AD and PTSD would obviously
require larger sample sizes in the future. Finally, we believe
the performance deterioration we observed when we pooled
data from different sites represents one of the great challenges
in applying machine learning methods to neuroimaging data.
Approaches that can model this variability such that inter-site
variability is minimized are needed to realize the true potential
of machine learning in clinical diagnostics.

AUTHOR CONTRIBUTIONS

GD conceived the study. TD, JK, and MD obtained funding and
setup the study design for the PTSD data. XZ, DR, BY, and GD
performed data analysis, with XZ taking the lead. XZ primarily
wrote the manuscript and all other authors contributed toward
interpretation of results and editing the manuscript.

ACKNOWLEDGMENTS

We would like to acknowledge the contributions of International
Neuroimaging Data Sharing Initiative (INDI), the organizers
of the International ADHD-200 competition and Neurobureau
for providing us with access to the ADHD neuroimaging data
(supported by NIMH grant # R03MH096321). We also used data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(adni.loni.usc.edu) database. As such, the investigators within
the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis
or writing of this report. A complete listing of ADNI investigators
and funders can be found at http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. We
would also like to acknowledge the researchers and agencies
that contributed to the ABIDE database (as well as NIMH grant
# K23MH087770). Finally, the authors acknowledge financial
support for PTSD/PCS data acquisition from the U.S. Army
Medical Research and Material Command (MRMC) (Grant #
00007218). The views, opinions, and/or findings from PTSD/PCS
data contained in this article are those of the authors and should
not be interpreted as representing the official views or policies,
either expressed or implied, of the U.S. Army or the Department
of Defense (DoD) or the United States Government. The funders
had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript. The authors
thank the personnel at the TBI clinic and behavioral health
clinic, Fort Benning, GA, USA and the US Army Aeromedical
Research Laboratory, Fort Rucker, AL, USA, and most of all,
the Soldiers who participated in the study. The authors thank
Julie Rodiek and Wayne Duggan for facilitating PTSD data
acquisition.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.
2018.00025/full#supplementary-material

REFERENCES

1. Filipovych R, Resnick SM, Davatzikos C. JointMMCC: joint maximum-
margin classification and clustering of imaging data. IEEE Trans Med

Imaging (2012) 31:1124–40. doi: 10.1109/TMI.2012.2186977
2. Plitt M, Barnes KA, Martin A. Functional connectivity classification of

autism identifies highly predictive brain features but falls short of biomarker
standards.NeuroImage Clin. (2014) 7:359–66. doi: 10.1016/j.nicl.2014.12.013

3. Khazaee A, Ebrahimzadeh A, and Babajani-Feremi A. Identifying patients
with Alzheimer’s disease using resting-state fMRI and graph theory. Clin
Neurophysiol. (2015) 126:2132–41. doi: 10.1016/j.clinph.2015.02.060

4. Deshpande G, Li Z, Santhanam P, Coles CD, Lynch ME, Hamann S, et al.
Recursive cluster elimination based support vector machine for disease state
prediction using resting state functional and effective brain connectivity.
PLoS ONE (2010) 5:e14277. doi: 10.1371/journal.pone.0014277

5. Deshpande G, Libero LE, Sreenivasan KR, Deshpande HD, Kana RK.
Identification of neural connectivity signatures of autism using machine
learning. Front Hum Neurosci. (2013) 7:670. doi: 10.3389/fnhum.2013.00670

6. Deshpande G, Wang P, Rangaprakash D, Wilamowski B. Fully
connected cascade artificial neural network architecture for attention
deficit hyperactivity disorder classification from functional magnetic
resonance imaging data. IEEE Trans Cybern. (2015) 45:2668–79.
doi: 10.1109/TCYB.2014.2379621

7. Libero LE, DeRamus TP, Lahti AC, Deshpande G, Kana RK. Multimodal
neuroimaging based classification of autism spectrum disorder using
anatomical, neurochemical, and white matter correlates. Cortex (2015)
66:46–59. doi: 10.1016/j.cortex.2015.02.008

8. Chen G, Ward BD, Xie C, Li W, Chen G, Goveas JS, et al. A
clustering-based method to detect functional connectivity differences.
Neuroimage (2012) 61:56–61. doi: 10.1016/j.neuroimage.2012.
02.064

9. Guttula SV, Allam A, and Gumpeny RS. Analyzing microarray data of
Alzheimer’s using cluster analysis to identify the biomarker genes. Int J

Alzheimers Dis. 2012:649456 (2012). doi: 10.1155/2012/649456
10. Wang XJ, and Krystal JH. Computational psychiatry. Neuron (2014)

84:638–54. doi: 10.1016/j.neuron.2014.10.018

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 21 September 2018 | Volume 4 | Article 25

https://github.com/xinyuzhao/identification-of-brain-based-disorders.git
https://github.com/xinyuzhao/identification-of-brain-based-disorders.git
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://www.frontiersin.org/articles/10.3389/fams.2018.00025/full#supplementary-material
https://doi.org/10.1109/TMI.2012.2186977
https://doi.org/10.1016/j.nicl.2014.12.013
https://doi.org/10.1016/j.clinph.2015.02.060
https://doi.org/10.1371/journal.pone.0014277
https://doi.org/10.3389/fnhum.2013.00670
https://doi.org/10.1109/TCYB.2014.2379621
https://doi.org/10.1016/j.cortex.2015.02.008
https://doi.org/10.1016/j.neuroimage.2012.02.064
https://doi.org/10.1155/2012/649456
https://doi.org/10.1016/j.neuron.2014.10.018
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao et al. Correspondence of Clinical-Neurobiological-Phenotypic Clusters

11. Abraham, A., Milham, M. P., Di Martino, A., Craddock, R. C., Samaras,
D., Thirion, B., et al. (2017). Deriving reproducible biomarkers from multi-
site resting-state data: an autism-based example. NeuroImage 147, 736–745.
doi: 10.1016/j.neuroimage.2016.10.045

12. Yao Z. Resting-state time-varying analysis reveals aberrant variations of
functional connectivity in autism. Front Hum Neurosci. (2016) 10:463.
doi: 10.3389/fnhum.2016.00463

13. Ellegood J, Anagnostou E, Babineau BA, Crawley JN, Lin L, Genestine M,
et al. Clustering autism: using neuroanatomical differences in 26 mouse
models to gain insight into the heterogeneity. Mol Psychiatry (2014)
20:118–25. doi: 10.1038/mp.2014.98

14. HrdlickaM, Dudova I, Beranova I, Lisy J, Belsan T, Neuwirth J, et al. Subtypes
of autism by cluster analysis based on structural MRI data. Eur Child Adolesc
Psychiatry (2005) 14:138–44. doi: 10.1007/s00787-005-0453-z

15. Sloan CD, Shen L, West JD, Wishart HA, Flashman LA, Rabin LA, et al.
Genetic pathway-based hierarchical clustering analysis of older adults with
cognitive complaints and amnestic mild cognitive impairment using clinical
and neuroimaging phenotypes.Am JMedGenet Part B Neuropsychiatr Genet.
(2010) 153:1060–9. doi: 10.1002/ajmg.b.31078

16. Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA. ADHD
prevalence estimates across three decades: An updated systematic
review and meta-regression analysis. Int J Epidemiol. (2014) 43:434–42.
doi: 10.1093/ije/dyt261

17. LeFever GB, Arcona AP, and Antonuccio DO. ADHD among American
Schoolchildren: Evidence of Overdiagnosis and Overuse of Medication. Sci
Rev Ment Health Pract. (2003) 2:49–60.

18. Reitz C, Brayne C, and Mayeux R. Epidemiology of Alzheimer disease. Nat
Rev Neurol. (2011) 7:137–52. doi: 10.1038/nrneurol.2011.2

19. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild
cognitive impairment: clinical characterization and outcome. Arch Neurol.
(1999) 56:303–8. doi: 10.1001/archneur.56.3.303

20. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR,
et al. Midlife blood pressure and dementia: the Honolulu–Asia aging
study? Neurobiol Aging (2000) 21:49–55. doi: 10.1016/S0197-4580(00)0
0096-8

21. Mayes SD, Calhoun SL, Crites DL. Does DSM-IV Asperger’s disorder exist? J
Abnorm Child Psychol. (2001) 29:263–71. doi: 10.1023/A:1010337916636

22. Miller JN, Ozonoff S. The external validity of Asperger disorder: lack of
evidence from the domain of neuropsychology. J Abnorm Psychol. (2000)
109:227–38. doi: 10.1037/0021-843X.109.2.227

23. McPartland JC, Reichow B, Volkmar FR.. Sensitivity and specificity of
proposedDSM-5 diagnostic criteria for autism spectrum disorder. J AmAcad

Child Adolesc Psychiatry (2012) 51:368–83. doi: 10.1016/j.jaac.2012.01.007
24. Chossegros L, Hours M, Charnay P, Bernard M, Fort E, Boisson D,

et al. Predictive factors of chronic post-traumatic stress disorder 6
months after a road traffic accident. Accid Anal Prev (2011) 43:471–7.
doi: 10.1016/j.aap.2010.10.004

25. American Psychiatric Association. Diagnostic and Statistical Manual

of Mental Disorders 5th Edition. Arlington, TX: American Psychiatric
Association (2013). doi: 10.1176/appi.books.9780890425596.744053

26. Dretsch MN, Wood KH, Daniel TA, Katz JS, Deshpande G, Goodman A,
et al. Exploring the neurocircuitry underpinning predictability to threat
in soldiers with PTSD compared to deployment exposed controls. Open
Neuroimag J. (2016) 10:111–24. doi: 10.2174/1874440001610010111

27. Greco JA, Liberzon I. Neuroimaging of fear-associated learning.
Neuropsychopharmacology (2016) 41:320–34. doi: 10.1038/npp.2015.255

28. Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., and Rauch,
S. L. (2007). Recall of fear extinction in humans activates the ventromedial
prefrontal cortex and hippocampus in concert. Biol. Psychiatry 62, 446–454.
doi: 10.1016/j.biopsych.2006.10.011

29. Dretsch MN, Thiel KJ, Athy JR, Irvin CR, Sirmon-Fjordbak B, Salvatore A.
Mood symptoms contribute to working memory decrement in active-duty
soldiers being treated for posttraumatic stress disorder. Brain Behav. (2012)
2:357–64. doi: 10.1002/brb3.53

30. Dretsch MN, Silverberg ND, Iverson GL. Multiple past concussions are
associated with ongoing post-concussive symptoms but not cognitive
impairment in active-duty Army soldiers. J Neurotrauma (2015) 6:1–6.
doi: 10.1089/neu.2014.3810

31. Pape MM, Williams K, Kodosky PN, Dretsch M. The community
balance and mobility scale: a pilot study detecting impairments in
military service members with comorbid mild TBI and psychological
health conditions. J Head Trauma Rehabil. (2016) 31:339–45.
doi: 10.1097/HTR.0000000000000179

32. Dretsch M, Blieberg J, Amador K, Caban J, Kelly J, Grammer G, DeGraba
T. Three scoring approaches to the Neurobehavioral Symptom Inventory
for measuring clinical change in service members receiving intensive
treatment for combat-related mTBI. J Head Trauma Rehabil. (2015) 31:23–9.
doi: 10.1097/HTR.0000000000000109

33. Dretsch MN, Williams K, Emmerich T, Crynen G, Ait-Ghezala G,
Chaytow H, et al. Brain-derived neurotropic factor polymorphisms,
traumatic stress, mild traumatic brain injury, and combat exposure
contribute to postdeployment traumatic stress. Brain Behav. (2016) 6:e00392.
doi: 10.1002/brb3.392

34. Bryant R. Post-traumatic stress disorder vs traumatic brain injury. Dialogues
Clin Neurosci. (2011) 13:251–62.

35. Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM,
et al. Dissecting psychiatric spectrum disorders by generative embedding.
NeuroImage Clin. (2014) 4:98–111. doi: 10.1016/j.nicl.2013.11.002

36. Van Dam NT, O’Connor D, Marcelle ET, Ho EJ, Cameron Craddock R, Tobe
RH, et al. Data-driven phenotypic categorization for neurobiological
analyses: beyond DSM-5 labels. Biol Psychiatry (2016) 81:484–94.
doi: 10.1016/j.biopsych.2016.06.027

37. Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, et al. Classification
of Alzheimer disease, mild cognitive impairment, and normal cognitive
status with large-scale network analysis based on resting-state functional MR
imaging. Radiology (2011) 259:213–21. doi: 10.1148/radiol.10100734

38. Brier MR, Thomas JB, Snyder AZ, Benzinger TL, Zhang D, Raichle ME, et al.
Loss of intranetwork and internetwork resting state functional connections
with alzheimer’s disease progression. J Neurosci. (2012) 32:8890–99.
doi: 10.1523/JNEUROSCI.5698-11.2012

39. Liu F, Guo W, Fouche, J.-P., Wang Y, Wang W, Ding J, et al.
Multivariate classification of social anxiety disorder using whole
brain functional connectivity. Brain Struct Funct. (2015) 220:101–15.
doi: 10.1007/s00429-013-0641-4

40. Tang Y, Jiang W, Liao J, Wang W, Luo A. Identifying individuals with
antisocial personality disorder using resting-state fMRI. PLoS ONE (2013)
8:e60652. doi: 10.1371/journal.pone.0060652

41. Zeng L-L, Shen H, Liu L, Hu D. Unsupervised classification of major
depression using functional connectivity MRI. Hum Brain Mapp. (2014)
35:1630–41. doi: 10.1002/hbm.22278

42. Ashikh V, Deshpande G, Rangaprakash D, Dutt DN. Clustering of
dynamic functional connectivity features obtained from functional magnetic
resonance imaging data. In: 2015 International Conference on Advances in

Computing, Communications and Informatics (ICACCI), Kochi: IEEE (2015).
p. 308–12.

43. Biswal BB. Resting state fMRI: a personal history.Neuroimage (2012) 62:938–
44. doi: 10.1016/j.neuroimage.2012.01.090

44. Buckner RL, Krienen FM, Yeo BT. Opportunities and limitations of
intrinsic functional connectivity MRI. Nat Neurosci. (2013) 16:832–7.
doi: 10.1038/nn.3423

45. Dasgupta S, Long PM. Performance guarantees for hierarchical clustering.
J Comput Syst Sci. (2005) 70:555–69. doi: 10.1016/j.jcss.2004.10.006

46. Ankerst M, Breunig MM, Kriegel, HP, Sander J. Optics: ordering points
to identify the clustering structure. ACM Sigmod Rec. (1999) 28:49–60.
doi: 10.1145/304182.304187

47. Rodriguez A, Laio A. Machine learning. Clustering by fast search and find of
density peaks. Science (2014) 344:1492–6. doi: 10.1126/science.1242072

48. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, CalhounVD. Tracking
whole-brain connectivity dynamics in the resting state. Cereb Cortex (2014)
24:663–76. doi: 10.1093/cercor/bhs352

49. Venkataraman A, Van Dijk KRA, Buckner RL, Golland P. Exploring
functional connectivity in fMRI via clustering. In: 2009 IEEE International

Conference on Acoustics, Speech and Signal Processing. Taipei. (2009). p.
441–4.

50. Dy JG, Brodley CE. Feature selection for unsupervised learning. JMach Learn

Res. (2004) 5:845–89.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 22 September 2018 | Volume 4 | Article 25

https://doi.org/10.1016/j.neuroimage.2016.10.045
https://doi.org/10.3389/fnhum.2016.00463
https://doi.org/10.1038/mp.2014.98
https://doi.org/10.1007/s00787-005-0453-z
https://doi.org/10.1002/ajmg.b.31078
https://doi.org/10.1093/ije/dyt261
https://doi.org/10.1038/nrneurol.2011.2
https://doi.org/10.1001/archneur.56.3.303
https://doi.org/10.1016/S0197-4580(00)00096-8
https://doi.org/10.1023/A:1010337916636
https://doi.org/10.1037/0021-843X.109.2.227
https://doi.org/10.1016/j.jaac.2012.01.007
https://doi.org/10.1016/j.aap.2010.10.004
https://doi.org/10.1176/appi.books.9780890425596.744053
https://doi.org/10.2174/1874440001610010111
https://doi.org/10.1038/npp.2015.255
https://doi.org/10.1016/j.biopsych.2006.10.011
https://doi.org/10.1002/brb3.53
https://doi.org/10.1089/neu.2014.3810
https://doi.org/10.1097/HTR.0000000000000179
https://doi.org/10.1097/HTR.0000000000000109
https://doi.org/10.1002/brb3.392
https://doi.org/10.1016/j.nicl.2013.11.002
https://doi.org/10.1016/j.biopsych.2016.06.027
https://doi.org/10.1148/radiol.10100734
https://doi.org/10.1523/JNEUROSCI.5698-11.2012
https://doi.org/10.1007/s00429-013-0641-4
https://doi.org/10.1371/journal.pone.0060652
https://doi.org/10.1002/hbm.22278
https://doi.org/10.1016/j.neuroimage.2012.01.090
https://doi.org/10.1038/nn.3423
https://doi.org/10.1016/j.jcss.2004.10.006
https://doi.org/10.1145/304182.304187
https://doi.org/10.1126/science.1242072
https://doi.org/10.1093/cercor/bhs352
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao et al. Correspondence of Clinical-Neurobiological-Phenotypic Clusters

51. Bradley PS, Mangasarian OL. Feature selection via mathematical
programming. INFORMS. J Comput. (1998) 10:209–17.

52. Sharp C, Skinner D, Serekoane M, Ross MW. A qualitative study of the
cultural appropriateness of the Diagnostic Interview Schedule for Children
(DISC-IV) in South Africa. Soc. Psychiatry Psychiatr. Epidemiol. (2011)
46:743–51. doi: 10.1007/s00127-010-0241-z

53. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al.
Schedule for affective disorders and schizophrenia for school-age
children-present and lifetime version (K-SADS-PL): initial reliability
and validity data. J Am Acad Child Adolesc Psychiatry (1997) 36:980–8.
doi: 10.1097/00004583-199707000-00021

54. Pappas D. ADHD rating scale-IV: checklists, norms, and
clinical interpretation. J Psychoeduc Assess. (2006) 24:172–8.
doi: 10.1177/0734282905285792

55. McGoey KE, DuPaul GJ, Haley E, Shelton TL. Parent and teacher ratings
of attention-deficit/hyperactivity disorder in preschool: The ADHD rating
scale-IV preschool version. J Psychopathol Behav Assess. (2007) 29:269–76.
doi: 10.1007/s10862-007-9048-y

56. Wechsler D.Wechsler Intelligence Scale for Children-Revised (WISC-R), TEA

Ediciones. New York, NY: The Psychological Corporation (1974).
57. Reich W. Diagnostic interview for children and adolescents

(DICA). J Am Acad Child Adolesc Psychiatry (2000) 39:59–66.
doi: 10.1097/00004583-200001000-00017

58. Conners CK, Sitarenios G, Parker JDA, Epstein JN. The Revised
Conners’ Parent Rating Scale (CPRS-R): Factor structure, reliability,
and criterion validity. J Abnorm Child Psychol. (1998) 26:257–68.
doi: 10.1023/A:1022602400621

59. Wechsler D. The Wechsler Intelligence Scale for Children, 4th Edn. San
Antonio, TX: The Psychological Corporation (2004).

60. Smith DR.Wechsler individual achievement test. In: Andrews JJW, Saklofske
DH, Janzen HL, editots. Handbook of Psychoeducational Assessment: Ability,

Achievement, and Behavior in Children. A Volume in the Educational

Psychology Series. Houston, TX: Academic Press (2001). p. 169–93.
61. Canivez GL, Konold TR, Collins JM, Wilson G. Construct validity of

the wechsler abbreviated scale of intelligence and wide range intelligence
test: convergent and structural validity. Sch Psychol Q. (2009) 24:252–65.
doi: 10.1037/a0018030

62. Malfa GL, Lassi S, Bertelli M, Pallanti S, Albertini G. Detecting attention-
deficit/hyperactivity disorder (ADHD) in adults with intellectual disability.
The use of Conners’ Adult ADHD Rating Scales (CAARS). Res Dev Disabil.
(2008) 29:158–64. doi: 10.1016/j.ridd.2007.02.002

63. Bridgett DJ, Walker ME. Intellectual functioning in adults with ADHD:
a meta-analytic examination of full scale IQ differences between
adults with and without ADHD. Psychol Assess. (2006) 18:1–14.
doi: 10.1037/1040-3590.18.1.1

64. Galasko D, Klauber MR, Hofstetter CR, Salmon DP, Lasker B, Thal LJ. The
Mini-Mental State Examination in the early diagnosis of Alzheimer’s disease.
Arch Neurol. (1990) 47:49–52. doi: 10.1001/archneur.1990.00530010061020

65. Burke WJ, Houston MJ, Boust SJ, Roccaforte WH. Use of the geriatric
depression scale in dementia of the alzheimer type. J Am Geriatr Soc. (1989)
37:856–60.

66. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM.
Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA
Work Group under the auspices of Department of Health and Human
Services Task Force on Alzheimer’s Disease. Neurology (1984) 34:939–44.
doi: 10.1212/WNL.34.7.939

67. Cummings JL. The Neuropsychiatric Inventory: assessing
psychopathology in dementia patients. Neurology (1997) 48:S10–6.
doi: 10.1212/WNL.48.5_Suppl_6.10S

68. SabbaghMN, Malek-Ahmadi M, Kataria R, Belden CM, Connor DJ, Pearson
C, et al. The Alzheimer’s questionnaire: a proof of concept study for a new
informant-based dementia assessment. J Alzheimer’s Dis (2010) 22:1015–21.
doi: 10.3233/JAD-2010-101185

69. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s
disease. Neuron (2009) 63:287–303. doi: 10.1016/j.neuron.2009.06.026

70. American Psychiatric Association (2000). Diagnostic and Statistical Manual

of Mental Disorders, 4th Edn. Washington, DC: American Psychiatric
Association.

71. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, et al.
Autism Diagnostic Observation Schedule (ADOS). J Autism Dev Disord.

(2000) 30:205–23.
72. Lord C, Rutter M, Couteur A. Autism diagnostic interview-revised. J Autism

Dev Disord. (1994) 29:30.
73. Dickstein BD, Weathers FW, Angkaw AC, Nievergelt CM, Yurgil K,

Nash WP, et al. Diagnostic utility of the posttraumatic stress disorder
(PTSD) checklist for identifying full and partial PTSD in active-
duty military. Assessment (2015) 22:289–97. doi: 10.1177/10731911145
48683

74. Cicerone KD, Kalmar K. Persistent postconcussion syndrome: the structure
of subjective complaints after mild traumatic brain injury. J Head Trauma

Rehabil. (1995) 10:1–17. doi: 10.1097/00001199-199510030-00002
75. Gualtieri CT, Johnson LG. Reliability and validity of a computerized

neurocognitive test battery, CNS Vital Signs. Arch Clin Neuropsychol. (2006)
21:623–43. doi: 10.1016/j.acn.2006.05.007

76. Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS. A whole
brain fMRI atlas generated via spatially constrained spectral clustering.Hum
Brain Mapp. (2012) 33:1914–28. doi: 10.1002/hbm.21333

77. Wu, GR, Liao W, Stramaglia S, Ding, JR, Chen H, Marinazzo D. A
blind deconvolution approach to recover effective connectivity brain
networks from resting state fMRI data. Med Image Anal. (2013) 17:365–74.
doi: 10.1016/j.media.2013.01.003

78. Deshpande G, Hu X. Investigating effective brain connectivity from fMRI
data: past findings and current issues with reference to Granger causality
analysis. Brain Connect. (2012) 2:235–45. doi: 10.1089/brain.2012.0091

79. Deshpande G, Sathian K, Hu X, Buckhalt J. A rigorous approach for testing
the constructionist hypotheses of brain function. Behav Brain Sci. (2012)
35:148–9. doi: 10.1017/S0140525X1100149X

80. Sathian K, Deshpande G, and Stilla R. Neural changes with tactile learning
reflect decision-level reweighting of perceptual readout. J Neurosci. (2013)
33:5387–98. doi: 10.1523/JNEUROSCI.3482-12.2013

81. Hutcheson NL, Sreenivasan KR, Deshpande G, Reid MA, Hadley J, White
DM, et al. Effective connectivity during episodic memory retrieval in
schizophrenia participants before and after antipsychotic medication. Hum
Brain Mapp. (2015) 36:1442–57. doi: 10.1002/hbm.22714

82. Handwerker DA, Ollinger JM, D’Esposito M. Variation of BOLD
hemodynamic responses across subjects and brain regions and
their effects on statistical analyses. Neuroimage (2004) 21:1639–51.
doi: 10.1016/j.neuroimage.2003.11.029

83. Deshpande G, Sathian K, Hu X. Effect of hemodynamic variability
on Granger causality analysis of fMRI. Neuroimage (2010) 52:884–96.
doi: 10.1016/j.neuroimage.2009.11.060

84. Rangaprakash D, Deshpande G, Daniel TA, Goodman AM, Robinson JL,
Salibi N, et al. Compromised hippocampus-striatum pathway as a potential
imaging biomarker of mild traumatic brain injury and posttraumatic
stress disorder. Hum Brain Mapp. (2017) 38:2843–4. doi: 10.1002/hbm.
23551

85. Rangaprakash D, Dretsch M, Yan W, Katz JS, Denney TS, Deshpande
G. Hemodynamic variability in soldiers with trauma: implications for
functional MRI connectivity studies. NeuroImage (2017) 16:409–17.
doi: 10.1016/j.nicl.2017.07.016

86. Rangaprakash D, Dretsch M, Yan W, Katz JS, Denney TS, Deshpande G.
Hemodynamic response function parameters obtained from resting-state
functional MRI data in Soldiers with trauma. Data Brief (2017) 14:558–62.
doi: 10.1016/j.dib.2017.07.072

87. Rangaprakash D, Dretsch M, Venkataraman A, Katz J, Denney TS,
Deshpande G. Identifying disease foci from static and dynamic effective
connectivity networks: illustration in Soldiers with trauma. Hum Brain

Mapp. (2018) 39:264–87. doi: 10.1002/hbm.23841
88. Rangaprakash D, Wu GR, Marinazzo D, Hu X, Deshpande G.

Hemodynamic response function (HRF) variability confounds resting
state fMRI connectivity. Magn Reson Med. (2018) 80:1697–713.
doi: 10.1002/mrm.27146

89. Rangaprakash D, Wu GR, Marinazzo D, Hu X, Deshpande G. Parameterized
hemodynamic response function data of healthy individuals obtained from
resting-state functional MRI in a 7T MRI scanner. Data Brief (2018)
17:1175–9. doi: 10.1016/j.dib.2018.01.003

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 23 September 2018 | Volume 4 | Article 25

https://doi.org/10.1007/s00127-010-0241-z
https://doi.org/10.1097/00004583-199707000-00021
https://doi.org/10.1177/0734282905285792
https://doi.org/10.1007/s10862-007-9048-y
https://doi.org/10.1097/00004583-200001000-00017
https://doi.org/10.1023/A:1022602400621
https://doi.org/10.1037/a0018030
https://doi.org/10.1016/j.ridd.2007.02.002
https://doi.org/10.1037/1040-3590.18.1.1
https://doi.org/10.1001/archneur.1990.00530010061020
https://doi.org/10.1212/WNL.34.7.939
https://doi.org/10.1212/WNL.48.5_Suppl_6.10S
https://doi.org/10.3233/JAD-2010-101185
https://doi.org/10.1016/j.neuron.2009.06.026
https://doi.org/10.1177/1073191114548683
https://doi.org/10.1097/00001199-199510030-00002
https://doi.org/10.1016/j.acn.2006.05.007
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1016/j.media.2013.01.003
https://doi.org/10.1089/brain.2012.0091
https://doi.org/10.1017/S0140525X1100149X
https://doi.org/10.1523/JNEUROSCI.3482-12.2013
https://doi.org/10.1002/hbm.22714
https://doi.org/10.1016/j.neuroimage.2003.11.029
https://doi.org/10.1016/j.neuroimage.2009.11.060
https://doi.org/10.1002/hbm.23551
https://doi.org/10.1016/j.nicl.2017.07.016
https://doi.org/10.1016/j.dib.2017.07.072
https://doi.org/10.1002/hbm.23841
https://doi.org/10.1002/mrm.27146
https://doi.org/10.1016/j.dib.2018.01.003
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao et al. Correspondence of Clinical-Neurobiological-Phenotypic Clusters

90. YanW, RangaprakashD, Deshpande G. Aberrant hemodynamic responses in
Autism: implications for resting state fMRI functional connectivity studies.
NeuroImage (2018) 19:320–30. doi: 10.1016/j.nicl.2018.04.013

91. Yan W, Rangaprakash D, Deshpande G. Hemodynamic Response function
parameters obtained from resting state BOLD fMRI data in subjects with
autism spectrum disorder and matched healthy controls. Data Brief (2018)
14:558–62. doi: 10.1016/j.dib.2018.04.126

92. Jia H, Hu X, Deshpande G. Behavioral relevance of the dynamics
of the functional brain connectome. Brain Connect. (2014) 4:741–59.
doi: 10.1089/brain.2014.0300

93. Deshpande G, Santhanam P, Hu X. Instantaneous and causal connectivity in
resting state brain networks derived from functional MRI data. Neuroimage

(2011) 54:1043–52. doi: 10.1016/j.neuroimage.2010.09.024
94. Lacey S, Hagtvedt H, Patrick VM, Anderson A, Stilla R, Deshpande G, et al.

Art for reward’s sake: visual art recruits the ventral striatum. Neuroimage

(2011) 55:420–33. doi: 10.1016/j.neuroimage.2010.11.027
95. Krueger F, Landgraf S, Van Der Meer E, Deshpande G, Hu X.

Effective connectivity of the multiplication network: a functional MRI and
multivariate granger causality mapping study. Hum Brain Mapp. (2011)
32:1419–31. doi: 10.1002/hbm.21119

96. Preusse F, van der Meer E, Deshpande G, Krueger F, Wartenburger
I. Fluid intelligence allows flexible recruitment of the parieto-frontal
network in analogical reasoning. Front Hum Neurosci. (2011) 5:22.
doi: 10.3389/fnhum.2011.00022

97. Grant MM, Wood K, Sreenivasan K, Wheelock M, White D, Thomas
J, et al. Influence of early life stress on intra- and extra-amygdaloid
causal connectivity. Neuropsychopharmacology (2015) 40:1–12.
doi: 10.1038/npp.2015.28

98. Hampstead BM, Khoshnoodi M, Yan W, Deshpande G, Sathian K. Patterns
of effective connectivity during memory encoding and retrieval differ
between patients with mild cognitive impairment and healthy older adults.
Neuroimage (2016) 124:997–1008. doi: 10.1016/j.neuroimage.2015.10.002

99. Feng C, Deshpande G, Liu C, Gu R, Luo YJ, Krueger F. Diffusion
of responsibility attenuates altruistic punishment: a functional magnetic
resonance imaging effective connectivity study. Hum Brain Mapp. (2016)
37:663–77. doi: 10.1002/hbm.23057

100. Sakoglu Ü, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD.
A method for evaluating dynamic functional network connectivity and task-
modulation: application to schizophrenia.Magn Reson Mater Phys Biol Med.
(2010) 23:351–66. doi: 10.1007/s10334-010-0197-8

101. Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun
VD, Corbetta M, et al. Dynamic functional connectivity: promise,
issues, and interpretations. Neuroimage (2013) 80:360–78.
doi: 10.1016/j.neuroimage.2013.05.079

102. Deshpande G, LaConte S, James GA, Peltier S, Hu X. Multivariate granger
causality analysis of fMRI data. Hum Brain Mapp. (2009) 30:1361–73.
doi: 10.1002/hbm.20606

103. Deshpande G, Hu X, Lacey S, Stilla R, Sathian K. Object familiarity
modulates effective connectivity during haptic shape perception.Neuroimage

(2010) 49:1991–2000. doi: 10.1016/j.neuroimage.2009.08.052
104. Hampstead BM, Stringer AY, Stilla RF, Deshpande G, Hu X, Moore AB,

et al. Activation and effective connectivity changes following explicit-
memory training for face-name pairs in patients with mild cognitive
impairment: a pilot study. Neurorehabil Neural Repair (2011) 25:210–22.
doi: 10.1177/1545968310382424

105. Sathian K, Lacey S, Stilla R, Gibson GO, Deshpande G, Hu X, et al. Dual
pathways for haptic and visual perception of spatial and texture information.
Neuroimage (2011) 57:462–75. doi: 10.1016/j.neuroimage.2011.05.001

106. Kapogiannis D, Deshpande G, Krueger F, Thornburg MP, Grafman JH.
Brain networks shaping religious belief. Brain Connect. (2014) 4:70–9.
doi: 10.1089/brain.2013.0172

107. Goodyear K, Parasuraman R, Chernyak S, Visser E, Madhavan P,
Deshpande G, et al. An fMRI and effective connectivity study investigating
miss errors during advice utilization from human and machine
agents. Soc. Neurosci. (2016) 12:570–81. doi: 10.1080/17470919.2016.
1205131

108. Liang P, Deshpande G, Zhao S, Liu J, Hu X, Li K. Altered directional
connectivity between emotion network and motor network in Parkinson’s

disease with depression. Medicine (Baltimore). (2016). 95:e4222.
doi: 10.1097/MD.0000000000004222

109. Grant MM,White D, Hadley J, Hutcheson N, Shelton R, Sreenivasan K, et al.
Early life trauma and directional brain connectivity within major depression.
Hum Brain Mapp. (2014) 35:4815–26. doi: 10.1002/hbm.22514

110. Lacey S, Stilla R, Sreenivasan K, Deshpande G, Sathian K. Spatial
imagery in haptic shape perception. Neuropsychologia (2014) 60:144–58.
doi: 10.1016/j.neuropsychologia.2014.05.008

111. Bellucci G, Chernyak S, Hoffman H, Deshpande G, Monte OD, Knutson
KM, et al. Effective connectivity of brain regions underlying third party
punishment: functional MRI and Granger causality evidence. Soc Neurosci.
(2016) 12:124–134. doi: 10.1080/17470919.2016.1153518

112. Wheelock MD, Sreenivasan KR, Wood KH, Ver Hoef LW, Deshpande
G, Knight DC. Threat-related learning relies on distinct dorsal
prefrontal cortex network connectivity. Neuroimage (2014) 102:904–12.
doi: 10.1016/j.neuroimage.2014.08.005

113. Jin T, Kim S-G. Cortical layer-dependent dynamic blood
oxygenation, cerebral blood flow and cerebral blood volume
responses during visual stimulation. Neuroimage (2008) 43:1–9.
doi: 10.1016/j.neuroimage.2008.06.029

114. Liao W, Chen H, Yang Q, Lei X. Analysis of fMRI data using improved
self-organizing mapping and spatio-temporal metric hierarchical clustering.
IEEE Trans Med Imaging (2008) 27:1472–83. doi: 10.1109/TMI.2008.923987

115. Cheng D, Kannan R, Vempala S, Wang G. A divide-and-merge
methodology for clustering. ACM Trans Database Syst. (2006) 31:1499–525.
doi: 10.1145/1189769.1189779

116. Calinski T, Harabasz J. A dendrite method for cluster analysis. Commun Stat

Simul Comput. (1974) 3:1–27. doi: 10.1080/03610917408548446
117. Liu Y, Li Z, XiongH, Gao X,Wu J,Wu S. Understanding and enhancement of

internal clustering validation measures. IEEE Trans Cybern. (2013) 43:982–
94. doi: 10.1109/TSMCB.2012.2220543

118. Yang J, Honavar V. Feature subset selection using a genetic algorithm. Patt
Recognit. (1997) 13:380.

119. Shahamat H, Pouyan AA. Feature selection using genetic algorithm for
classification of schizophrenia using fMRI data. J Artif Intell Data Min.
(2015) 3:30–7. doi: 10.5829/idosi.JAIDM.2015.03.01.04

120. Fred ALN, Jain AK. Combining multiple clusterings using evidence
accumulation. IEEE Trans Patt Anal Mach Intell. (2005) 27:835–50.
doi: 10.1109/TPAMI.2005.113

121. Fred ALN, Jain AK. Data clustering using evidence accumulation.
Object Recognit Support User Interact Serv Robot. (2002) 4:276–80.
doi: 10.1109/ICPR.2002.1047450

122. Tarjan RE. Efficiency of a good but not linear set union algorithm. J ACM
(1975) 22:215–25. doi: 10.1145/321879.321884

123. Maron-Katz A, Amar D, Simon EB, Hendler T, Shamir R. RichMind: a tool
for improved inference from large-scale neuroimaging results. PLoS ONE

(2016) 11:e0159643. doi: 10.1371/journal.pone.0159643
124. Xia M, Wang J, He Y. BrainNet viewer: a network visualization

tool for human brain connectomics. PLoS ONE (2013) 8:e68910.
doi: 10.1371/journal.pone.0068910

125. Whitfield-Gabrieli S, Ford JM. Default mode network activity and
connectivity in psychopathology. Annu Rev Clin Psychol. (2012) 8:49–76.
doi: 10.1146/annurev-clinpsy-032511-143049

126. Menon V. Large-scale brain networks and psychopathology: a
unifying triple network model. Trends Cogn Sci. (2011) 15:483–506.
doi: 10.1016/j.tics.2011.08.003

127. Vergun S, Deshpande AS, Meier TB, Song J, Tudorascu DL, Nair VA,
et al. Characterizing functional connectivity differences in aging adults using
machine learning on resting state fMRI data. Front Comput Neurosci. (2013)
7:38. doi: 10.3389/fncom.2013.00038

128. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network.
Ann NY Acad Sci. (2008) 1124:1–38. doi: 10.1196/annals.1440.011

129. Sestieri C, Corbetta M, Romani GL, Shulman GL. Episodic
memory retrieval, parietal cortex, and the default mode network:
functional and topographic analyses. J Neurosci. (2011) 31:4407–20.
doi: 10.1523/JNEUROSCI.3335-10.2011

130. Vannini P, O’Brien J, O’Keefe K, Pihlajamäki M, Laviolette P, Sperling
RA. What goes down must come up: role of the posteromedial

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 24 September 2018 | Volume 4 | Article 25

https://doi.org/10.1016/j.nicl.2018.04.013
https://doi.org/10.1016/j.dib.2018.04.126
https://doi.org/10.1089/brain.2014.0300
https://doi.org/10.1016/j.neuroimage.2010.09.024
https://doi.org/10.1016/j.neuroimage.2010.11.027
https://doi.org/10.1002/hbm.21119
https://doi.org/10.3389/fnhum.2011.00022
https://doi.org/10.1038/npp.2015.28
https://doi.org/10.1016/j.neuroimage.2015.10.002
https://doi.org/10.1002/hbm.23057
https://doi.org/10.1007/s10334-010-0197-8
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://doi.org/10.1002/hbm.20606
https://doi.org/10.1016/j.neuroimage.2009.08.052
https://doi.org/10.1177/1545968310382424
https://doi.org/10.1016/j.neuroimage.2011.05.001
https://doi.org/10.1089/brain.2013.0172
https://doi.org/10.1080/17470919.2016.1205131
https://doi.org/10.1097/MD.0000000000004222
https://doi.org/10.1002/hbm.22514
https://doi.org/10.1016/j.neuropsychologia.2014.05.008
https://doi.org/10.1080/17470919.2016.1153518
https://doi.org/10.1016/j.neuroimage.2014.08.005
https://doi.org/10.1016/j.neuroimage.2008.06.029
https://doi.org/10.1109/TMI.2008.923987
https://doi.org/10.1145/1189769.1189779
https://doi.org/10.1080/03610917408548446
https://doi.org/10.1109/TSMCB.2012.2220543
https://doi.org/10.5829/idosi.JAIDM.2015.03.01.04
https://doi.org/10.1109/TPAMI.2005.113
https://doi.org/10.1109/ICPR.2002.1047450
https://doi.org/10.1145/321879.321884
https://doi.org/10.1371/journal.pone.0159643
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1146/annurev-clinpsy-032511-143049
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.3389/fncom.2013.00038
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1523/JNEUROSCI.3335-10.2011
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao et al. Correspondence of Clinical-Neurobiological-Phenotypic Clusters

cortices in encoding and retrieval. Cereb Cortex (2011) 21:22–34.
doi: 10.1093/cercor/bhq051

131. Spreng RN, Mar R, Kim ASN. The common neural basis of autobiographical
memory, prospection, navigation, theory of mind, and the default
mode: a quantitative meta-analysis. J Cogn Neurosci. (2009) 21:489–510.
doi: 10.1162/jocn.2008.21029

132. Binder JR, Desai RH, GravesWW,Conant LL.Where is the semantic system?
A critical review and meta-analysis of 120 functional neuroimaging studies.
Cereb Cortex (2009) 19:2767–96. doi: 10.1093/cercor/bhp055

133. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and
social cognition. Nat Rev Neurosci. (2006) 7:268–77. doi: 10.1038/nrn1884

134. Rangel A, Camerer C, Montague PR. A framework for studying the
neurobiology of value-based decision making. Nat Rev Neurosci. (2008)
9:545–56. doi: 10.1038/nrn2357

135. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate
and medial prefrontal cortex. Trends Cogn Sci. (2010) 15:85–93.
doi: 10.1016/j.tics.2010.11.004

136. Lagioia A, VanDe Ville D, DebbanéM, Lazeyras F, Eliez S. Adolescent resting
state networks and their associations with schizotypal trait expression. Front
Syst Neurosci. (2010) 4:35. doi: 10.3389/fnsys.2010.00035

137. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M.
Electrophysiological signatures of resting state networks in the
human brain. Proc Natl Acad Sci USA (2007) 104:13170–13175.
doi: 10.1073/pnas.0700668104

138. Ganis G, Thompson WL, Kosslyn SM. Brain areas underlying visual mental
imagery and visual perception: an fMRI study. Cogn Brain Res. (2004)
20:226–41. doi: 10.1016/j.cogbrainres.2004.02.012

139. Schiltz C, Sorger B, Caldara R, Ahmed F, Mayer E, Goebel R, et al. Impaired
face discrimination in acquired prosopagnosia is associated with abnormal
response to individual faces in the right middle fusiform gyrus. Cereb. Cortex
(2006) 16:574–586. doi: 10.1093/cercor/bhj005

140. Renier LA, Anurova I, De Volder AG, Carlson S, VanMeter J, Rauschecker
JP. Preserved functional specialization for spatial processing in the
middle occipital gyrus of the early blind. Neuron (2010) 68:138–48.
doi: 10.1016/j.neuron.2010.09.021

141. Vanni S, Tanskanen T, SeppäM,Uutela K, Hari R. Coinciding early activation
of the human primary visual cortex and anteromedial cuneus. Proc Natl Acad
Sci USA (2001) 98:2776–780. doi: 10.1073/pnas.041600898

142. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science, Neurology
(2000). doi: 10.1036/0838577016

143. Kornhuber HH. Cortex, basal ganglia and cerebellum in motor control.
Electroencephalogr Clin Neurophysiol Suppl. (1978) 34:449–455.

144. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the
control of purposive saccadic eye movements. Physiol Rev. (2000) 80:
953–78. doi: 10.1152/physrev.2000.80.3.953

145. Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the
cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol
Rev. (2010) 117:541–74. doi: 10.1037/a0019077

146. Bennett M, Dennett D, Hacker P, Searle J, Hurford JR, Bennett M, et al.
Neuroscience and philosophy: brain, mind, and language. Q Rev Biol. (2007)
82:439–40. doi: 10.1086/527640

147. Soares JM, Sampaio A, Ferreira LM, Santos NC, Marques P, Marques F, et al.
Stress impact on resting state brain networks. PLoS ONE (2013) 8:e66500.
doi: 10.1371/journal.pone.0066500

148. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon
V, et al. Distinct cerebellar contributions to intrinsic connectivity
networks. J Neurosci. (2009) 29:8586–94. doi: 10.1523/JNEUROSCI.1868-
09.2009

149. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in
the resting brain: a network analysis of the default mode hypothesis. Proc
Natl Acad Sci USA (2003) 100:253–8. doi: 10.1073/pnas.0135058100

150. Chenji S, Jha S, Lee D, Brown M, Seres P, Mah D, et al. Investigating
default mode and sensorimotor network connectivity in amyotrophic lateral
sclerosis. PLoS ONE (2016) 11:e0157443. doi: 10.1371/journal.pone.0157443

151. Friederici AD. The brain basis of language processing: from structure to
function. Physiol Rev. (2011) 91:1357–92. doi: 10.1152/physrev.00006.2011

152. Friederici AD, Gierhan SME. The language network. Curr Opin Neurobiol.
(2013) 23:250–54. doi: 10.1016/j.conb.2012.10.002

153. Emmorey K. The role of Broca’s area in sign language. In: Grodzinsky Y,
Amunts K, editors. Broca’s Region. Oxford, UK: Oxford University Press
(2006). pp. 167–82.

154. Mason RA, Prat CS, Just MA. Neurocognitive brain response to
transient impairment of wernicke’s area. Cereb Cortex (2014) 24:1474–84.
doi: 10.1093/cercor/bhs423

155. Acheson DJ, Hagoort P. Stimulating the brain’s language network:
syntactic ambiguity resolution after TMS to the inferior frontal gyrus
and middle temporal gyrus. J Cogn Neurosci. (2013) 25:1664–77.
doi: 10.1162/jocn_a_00430

156. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous
neuronal activity distinguishes human dorsal and ventral attention systems.
Proc Natl Acad Sci USA (2006) 103:10046–51. doi: 10.1073/pnas.06041
87103

157. Yantis S. Goal-directed and stimulus-driven determinants of attentional
control. Control Cogn. Process. Atten. Perform. (2000) Xviii:73–103.
doi: 10.2337/db11-0571

158. Duan X, Liao W, Liang D, Qiu L, Gao Q, Liu C, et al. Large-
scale brain networks in board game experts: insights from a domain-
related task and task-free resting state. PLoS ONE (2012) 7:e32532.
doi: 10.1371/journal.pone.0032532

159. Majerus S, Attout L, D’Argembeau A, Degueldre C, Fias W, Maquet P,
et al. Attention supports verbal short-termmemory via competition between
dorsal and ventral attention networks. Cereb Cortex (2012) 22:1086–97.
doi: 10.1093/cercor/bhr174

160. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed
with functional magnetic resonance imaging. Nat Rev Neurosci. (2007)
8:700–11. doi: 10.1038/nrn2201

161. Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, et al.
Longitudinal mapping of cortical thickness and clinical outcome in children
and adolescents with attention-deficit/hyperactivity disorder. Arch Gen

Psychiatry (2006) 63:540–9. doi: 10.1001/archpsyc.63.5.540
162. Cubillo A, Halari R, Ecker C, Giampietro V, Taylor E, Rubia K.

Reduced activation and inter-regional functional connectivity of fronto-
striatal networks in adults with childhood Attention-Deficit Hyperactivity
Disorder (ADHD) and persisting symptoms during tasks of motor
inhibition and cognitive switching. J Psychiatr Res. (2010) 44:629–39.
doi: 10.1016/j.jpsychires.2009.11.016

163. Rubia K, Halari R, Cubillo A, Mohammad AM, Scott S, Brammer
M. Disorder-specific inferior prefrontal hypofunction in boys with pure
attention-deficit/hyperactivity disorder compared to boys with pure conduct
disorder during cognitive flexibility. Hum Brain Mapp. (2010) 31:1823–33.
doi: 10.1002/hbm.20975

164. Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M, et al. Task-
related default mode network modulation and inhibitory control in ADHD:
effects of motivation and methylphenidate. J Child Psychol Psychiatry. (2011)
52:761–71. doi: 10.1111/j.1469-7610.2010.02333.x

165. Konrad K, Eickhoff SB. Is the ADHD brain wired differently? A review
on structural and functional connectivity in attention deficit hyperactivity
disorder. Hum Brain Mapp. (2010) 31:904–16. doi: 10.1002/hbm.21058

166. Li X, Sroubek A, KellyMS, Lesser I, Sussman E, He Y, et al. Atypical pulvinar-
cortical pathways during sustained attention performance in children with
attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry

(2012) 51:11971207.e4. doi: 10.1016/j.jaac.2012.08.013
167. Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, et al. Abnormal resting-

state functional connectivity patterns of the putamen in medication-naive
children with attention deficit hyperactivity disorder. Brain Res. (2009)
1303:195–206. doi: 10.1016/j.brainres.2009.08.029

168. Bush G. Attention-deficit/hyperactivity disorder and attention networks.
Neuropsychopharmacology (2010) 35:278–300. doi: 10.1038/npp.2009.120

169. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A,
et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult
attention-deficit/hyperactivity disorder. Biol. Psychiatry (2008) 63:332–7.
doi: 10.1016/j.biopsych.2007.06.025

170. Sun L, Cao Q, Long X, Sui M, Cao X, Zhu C, et al. Abnormal functional
connectivity between the anterior cingulate and the default mode network in
drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Res.
(2012) 201:120–7. doi: 10.1016/j.pscychresns.2011.07.001

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 25 September 2018 | Volume 4 | Article 25

https://doi.org/10.1093/cercor/bhq051
https://doi.org/10.1162/jocn.2008.21029
https://doi.org/10.1093/cercor/bhp055
https://doi.org/10.1038/nrn1884
https://doi.org/10.1038/nrn2357
https://doi.org/10.1016/j.tics.2010.11.004
https://doi.org/10.3389/fnsys.2010.00035
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1016/j.cogbrainres.2004.02.012
https://doi.org/10.1093/cercor/bhj005
https://doi.org/10.1016/j.neuron.2010.09.021
https://doi.org/10.1073/pnas.041600898
https://doi.org/10.1036/0838577016
https://doi.org/10.1152/physrev.2000.80.3.953
https://doi.org/10.1037/a0019077
https://doi.org/10.1086/527640
https://doi.org/10.1371/journal.pone.0066500
https://doi.org/10.1523/JNEUROSCI.1868-09.2009
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1371/journal.pone.0157443
https://doi.org/10.1152/physrev.00006.2011
https://doi.org/10.1016/j.conb.2012.10.002
https://doi.org/10.1093/cercor/bhs423
https://doi.org/10.1162/jocn_a_00430
https://doi.org/10.1073/pnas.0604187103
https://doi.org/10.2337/db11-0571
https://doi.org/10.1371/journal.pone.0032532
https://doi.org/10.1093/cercor/bhr174
https://doi.org/10.1038/nrn2201
https://doi.org/10.1001/archpsyc.63.5.540
https://doi.org/10.1016/j.jpsychires.2009.11.016
https://doi.org/10.1002/hbm.20975
https://doi.org/10.1111/j.1469-7610.2010.02333.x
https://doi.org/10.1002/hbm.21058
https://doi.org/10.1016/j.jaac.2012.08.013
https://doi.org/10.1016/j.brainres.2009.08.029
https://doi.org/10.1038/npp.2009.120
https://doi.org/10.1016/j.biopsych.2007.06.025
https://doi.org/10.1016/j.pscychresns.2011.07.001
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao et al. Correspondence of Clinical-Neurobiological-Phenotypic Clusters

171. Bush G. Cingulate, frontal, and parietal cortical dysfunction in
attention-deficit/hyperactivity disorder. Biol Psychiatry (2011) 69:1160–7.
doi: 10.1016/j.biopsych.2011.01.022

172. Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond
the prefrontal-striatal model. Trends Cogn Sci. (2012) 16:17–26.
doi: 10.1016/j.tics.2011.11.007

173. Cubillo A, Rubia K. Structural and functional brain imaging in adult
attention-deficit/hyperactivity disorder. Expert Rev Neurother. (2010)
10:603–20. doi: 10.1586/ern.10.4

174. Köchel A, Schöngaßner F, Feierl-Gsodam S, and Schienle A. Processing
of affective prosody in boys suffering from attention deficit hyperactivity
disorder: a near-infrared spectroscopy study. Soc Neurosci. (2015) 919:1–9.
doi: 10.1080/17470919.2015.1017111

175. Kessler DA, Angstadt M, Welsh RC, Sripada, C. Modality-spanning
deficits in attention-deficit/hyperactivity disorder in functional networks,
gray matter, and white matter. J Neurosci. (2014) 34:16555–66.
doi: 10.1523/JNEUROSCI.3156-14.2014

176. Dickstein SG, Bannon K, Xavier Castellanos F, Milham MP. The neural
correlates of attention deficit hyperactivity disorder: an ALE meta-
analysis. J Child Psychol Psychiatry Allied Discip. (2006) 47:1051–62.
doi: 10.1111/j.1469-7610.2006.01671.x

177. Rubia K. “Cool” inferior frontostriatal dysfunction in attention-
deficit/hyperactivity disorder versus “hot” ventromedial orbitofrontal-limbic
dysfunction in conduct disorder: a review. Biol Psychiatry (2011) 69:e69–87.
doi: 10.1016/j.biopsych.2010.09.023

178. Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, et al. Altered resting-state
functional connectivity patterns of anterior cingulate cortex in adolescents
with attention deficit hyperactivity disorder.Neurosci Lett. (2006) 400:39–43.
doi: 10.1016/j.neulet.2006.02.022

179. Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-
deficit/hyperactivity disorder. Biol Psychiatry (2005) 57:1263–72.
doi: 10.1016/j.biopsych.2004.11.019

180. Hale TS, Kane AM, Kaminsky O, Tung KL, Wiley JF, McGough JJ, et al.
Visual network asymmetry and default mode network function in ADHD:
An fMRI study. Front. Psychiatry (2014) 5:81. doi: 10.3389/fpsyt.2014.
00081

181. Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H.
Neuroimaging markers for the prediction and early diagnosis of
Alzheimer’s disease dementia. Trends Neurosci. (2011) 34:430–442.
doi: 10.1016/j.tins.2011.05.005

182. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network
activity distinguishes Alzheimer’s disease from healthy aging: evidence
from functional MRI. Proc. Natl Acad Sci USA (2004) 101:4637–42.
doi: 10.1073/pnas.0308627101

183. Supekar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of
intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput

Biol. (2008) 4:e1000100. doi: 10.1371/journal.pcbi.1000100
184. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes

in hippocampal connectivity in the early stages of Alzheimer’s disease:
evidence from resting state fMRI. Neuroimage (2006) 31:496–504.
doi: 10.1016/j.neuroimage.2005.12.033

185. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici
GD, et al. Divergent network connectivity changes in behavioural variant
frontotemporal dementia and Alzheimer’s disease. Brain (2010) 133:1352–
67. doi: 10.1093/brain/awq075

186. Gomez-Ramirez J, Wu J. Network-based biomarkers in Alzheimer’s
disease: review and future directions. Front Aging Neurosci. (2014) 6:1–9.
doi: 10.3389/fnagi.2014.00012

187. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al.
a Cortical hubs revealed by intrinsic functional connectivity: mapping,
assessment of stability, and relation to Alzheimer’s disease. J Neurosci. (2009)
29:1860–73. doi: 10.1523/JNEUROSCI.5062-08.2009

188. Sperling RA, Dickerson BC, Pihlajamaki M, Vannini P, LaViolette
PS, Vitolo OV, et al. Functional alterations in memory networks
in early Alzheimer’s disease. Neuromolecular Med. (2010) 12:27–43.
doi: 10.1007/s12017-009-8109-7

189. Machulda MM, Ward HA, Borowski B, Gunter JL, Cha RH,
O’Brien PC, et al. Comparison of memory fMRI response among

normal, MCI, and Alzheimer’s patients. Neurology (2003) 61:500–6.
doi: 10.1055/s-0029-1237430.Imprinting

190. Johnson SC, Schmitz TW, Trivedi M, a, Ries ML, Torgerson BM,
Carlsson CM, et al. The influence of Alzheimer disease family history and
apolipoprotein E epsilon4 on mesial temporal lobe activation. J Neurosci.
(2006) 26:6069–76. doi: 10.1523/JNEUROSCI.0959-06.2006

191. Agosta F, Pievani M, Geroldi C, Copetti M, Frisoni GB, Filippi
M. Resting state fMRI in Alzheimer’s disease: beyond the
default mode network. Neurobiol Aging (2012) 33:1564–78.
doi: 10.1016/j.neurobiolaging.2011.06.007

192. Foundas AL, Leonard CM, Mahoney SM, Agee OF, Heilman KM.
Atrophy of the hippocampus, parietal cortex, and insula in Alzheimer’s
disease: a volumetric magnetic resonance imaging study. Neuropsychiatry
Neuropsychol Behav Neurol. (1997) 10:81–9.

193. Rombouts SARB, Barkhof F, Witter MP, Scheltens P. Unbiased whole-brain
analysis of gray matter loss in Alzheimer’s disease. Neurosci Lett. (2000)
285:231–3. doi: 10.1016/S0304-3940(00)01067-3

194. Karas GB, Scheltens P, Rombouts SARB, Visser PJ, Van Schijndel RA,
Fox NC, et al. Global and local gray matter loss in mild cognitive
impairment and Alzheimer’s disease. Neuroimage (2004) 23:708–16.
doi: 10.1016/j.neuroimage.2004.07.006

195. Li R, Wu X, Chen K, Fleisher AS, Reiman EM, Yao L. Alterations of
directional connectivity among resting-state networks in Alzheimer disease.
Am J Neuroradiol. (2013) 34:340–5. doi: 10.3174/ajnr.A3197

196. Monk CS, Peltier SJ, Wiggins JL, Weng, SJ, Carrasco M, Risi
S, et al. Abnormalities of intrinsic functional connectivity
in autism spectrum disorders. Neuroimage (2009) 47:764–72.
doi: 10.1016/j.neuroimage.2009.04.069

197. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R,
et al. Abnormal functional connectivity of default mode sub-networks
in autism spectrum disorder patients. Neuroimage (2010) 53:247–56.
doi: 10.1016/j.neuroimage.2010.05.067

198. Radua J, Via E, Catani M, Mataix-Cols D. Voxel-based meta-analysis
of regional white-matter volume differences in autism spectrum
disorder versus healthy controls. Psychol Med. (2011) 41:1539–50.
doi: 10.1017/S0033291710002187

199. Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, and Milham
MP. Functional brain correlates of social and nonsocial processes in
autism spectrum disorders: an activation likelihood estimation meta-
analysis. Biol Psychiatry (2009) 65:63–74. doi: 10.1016/j.biopsych.2008.
09.022

200. Weng SJ, Wiggins JL, Peltier SJ, Carrasco M, Risi S, Lord C, et al.
Alterations of resting state functional connectivity in the default network in
adolescents with autism spectrum disorders. Brain Res. (2010) 1313:202–14.
doi: 10.1016/j.brainres.2009.11.057

201. ModyM,ManoachDS, Guenther FH, Kenet T, Bruno KA,Mcdougle CJ, et al.
Speech and language in autism spectrum disorder: a view through the lens
of behavior and brain imaging. Neuropsychiatry (London). (2013) 3:223–32.
doi: 10.2217/npy.13.19

202. Verly M, Verhoeven J, Zink I, Mantini D, Peeters R, Deprez S, et al.
Altered functional connectivity of the language network in ASD: role of
classical language areas and cerebellum. NeuroImage Clin. (2014) 4:374–82.
doi: 10.1016/j.nicl.2014.01.008

203. Peeva MG, Tourville JA, Agam Y, Holland B, Manoach DS, Guenther
FH. White matter impairment in the speech network of individuals
with autism spectrum disorder. NeuroImage Clin. (2013) 3:234–41.
doi: 10.1016/j.nicl.2013.08.011

204. Prat CS, Stocco A, Neuhaus E, Kleinhans NM. Basal ganglia
impairments in autism spectrum disorder are related to abnormal
signal gating to prefrontal cortex. Neuropsychologia (2016) 91:268–81.
doi: 10.1016/j.neuropsychologia.2016.08.007

205. Uddin LQ, Menon V. The anterior insula in autism: under-connected
and under-examined. Neurosci Biobehav Rev. (2009) 33:1198–203.
doi: 10.1016/j.neubiorev.2009.06.002

206. Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C,
et al. Salience network-based classification and prediction of symptom
severity in children with autism. JAMA Psychiatry (2013) 70:869–79.
doi: 10.1001/jamapsychiatry.2013.104

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 26 September 2018 | Volume 4 | Article 25

https://doi.org/10.1016/j.biopsych.2011.01.022
https://doi.org/10.1016/j.tics.2011.11.007
https://doi.org/10.1586/ern.10.4
https://doi.org/10.1080/17470919.2015.1017111
https://doi.org/10.1523/JNEUROSCI.3156-14.2014
https://doi.org/10.1111/j.1469-7610.2006.01671.x
https://doi.org/10.1016/j.biopsych.2010.09.023
https://doi.org/10.1016/j.neulet.2006.02.022
https://doi.org/10.1016/j.biopsych.2004.11.019
https://doi.org/10.3389/fpsyt.2014.00081
https://doi.org/10.1016/j.tins.2011.05.005
https://doi.org/10.1073/pnas.0308627101
https://doi.org/10.1371/journal.pcbi.1000100
https://doi.org/10.1016/j.neuroimage.2005.12.033
https://doi.org/10.1093/brain/awq075
https://doi.org/10.3389/fnagi.2014.00012
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1007/s12017-009-8109-7
https://doi.org/10.1055/s-0029-1237430.Imprinting
https://doi.org/10.1523/JNEUROSCI.0959-06.2006
https://doi.org/10.1016/j.neurobiolaging.2011.06.007
https://doi.org/10.1016/S0304-3940(00)01067-3
https://doi.org/10.1016/j.neuroimage.2004.07.006
https://doi.org/10.3174/ajnr.A3197
https://doi.org/10.1016/j.neuroimage.2009.04.069
https://doi.org/10.1016/j.neuroimage.2010.05.067
https://doi.org/10.1017/S0033291710002187
https://doi.org/10.1016/j.biopsych.2008.09.022
https://doi.org/10.1016/j.brainres.2009.11.057
https://doi.org/10.2217/npy.13.19
https://doi.org/10.1016/j.nicl.2014.01.008
https://doi.org/10.1016/j.nicl.2013.08.011
https://doi.org/10.1016/j.neuropsychologia.2016.08.007
https://doi.org/10.1016/j.neubiorev.2009.06.002
https://doi.org/10.1001/jamapsychiatry.2013.104
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhao et al. Correspondence of Clinical-Neurobiological-Phenotypic Clusters

207. Birn RM, Patriat R, Phillips ML, Germain A, Herringa RJ. Childhood
maltreatment and combat posttraumatic stress differentially predict fear-
related fronto-subcortical connectivity. Depress Anxiety (2014) 31:880–92.
doi: 10.1002/da.22291

208. Chen AC, Etkin A. Hippocampal network connectivity and activation
differentiates post-traumatic stress disorder from generalized
anxiety disorder. Neuropsychopharmacology (2013) 38:1889–98.
doi: 10.1038/npp.2013.122

209. Cisler JM, Steele JS, Lenow JK, Smitherman S, Everett B, Messias E, et al.
Functional reorganization of neural networks during repeated exposure to
the traumatic memory in posttraumatic stress disorder: an exploratory fMRI
study. J Psychiatr Res. (2014) 48:47–55. doi: 10.1016/j.jpsychires.2013.09.013

210. Braun K. The Prefrontal-limbic system: development, neuroanatomy,
function, and implications for socioemotional development. Clin Perinatol.
(2011) 38:685–702. doi: 10.1016/j.clp.2011.08.013

211. Bluhm RL, Williamson PC, Osuch EA, Frewen PA, Stevens TK, Boksman
K, et al. Alterations in default network connectivity in posttraumatic stress
disorder related to early-life trauma. J Psychiatry Neurosci. (2009) 34:187–94.

212. Long Z, Duan X, Xie B, Du H, Li R, Xu Q, et al. Altered brain
structural connectivity in post-traumatic stress disorder: a diffusion
tensor imaging tractography study. J Affect Disord. (2013) 150:798–806.
doi: 10.1016/j.jad.2013.03.004

213. White SF, Costanzo ME, Blair JR, Roy MJ. PTSD symptom severity
is associated with increased recruitment of top-down attentional
control in a trauma-exposed sample. NeuroImage Clin. (2015) 7:19–27.
doi: 10.1016/j.nicl.2014.11.012

214. Rabinak CA, Angstadt M,Welsh RC, Kenndy AE, LyubkinM,Martis B, et al.
Altered amygdala resting-state functional connectivity in post-traumatic
stress disorder. Front Psychiatry (2011) 2:1–8. doi: 10.3389/fpsyt.2011.
00062

215. Ebdlahad S, Nofzinger EA, James JA, Buysse DJ, Price JC, and Germain A.
Comparing neural correlates of REM sleep in posttraumatic stress disorder
and depression: a neuroimaging study. Psychiatry Res. (2013) 214:422–8.
doi: 10.1016/j.pscychresns.2013.09.007

216. Germain A, James J, Insana S, Herringa RJ, Mammen O, Price J, et al.
A window into the invisible wound of war: Functional neuroimaging of
REM sleep in returning combat veterans with PTSD. Psychiatry Res. (2013)
211:176–9. doi: 10.1016/j.pscychresns.2012.05.007

217. Lanius RA, BluhmR, Lanius U, and Pain C. A review of neuroimaging studies
in PTSD: Heterogeneity of response to symptom provocation. J Psychiatr Res.
(2006) 40:709–29. doi: 10.1016/j.jpsychires.2005.07.007

218. Stark EA, Parsons CE, Van Hartevelt TJ, Charquero-Ballester M,McManners
H, Ehlers A, et al. Post-traumatic stress influences the brain even
in the absence of symptoms: a systematic, quantitative meta-analysis
of neuroimaging studies. Neurosci Biobehav Rev. (2015) 56:207–21.
doi: 10.1016/j.neubiorev.2015.07.007

219. Herringa R, Phillips M, Almeida J, Insana S, Germain A. Post-traumatic
stress symptoms correlate with smaller subgenual cingulate, caudate, and
insula volumes in unmedicated combat veterans. Psychiatry Res. (2012)
203:139–45. doi: 10.1016/j.pscychresns.2012.02.005

220. Yin Y, Jin C, Eyler LT, Jin H, Hu X, Duan L, et al. Altered regional
homogeneity in post-traumatic stress disorder: a restingstate functional
magnetic resonance imaging study. Neurosci Bull. (2012) 28:541–9.
doi: 10.1007/s12264-012-1261-3

221. Faries DE, Yalcin I, Harder D, Heiligenstein JH. Validation of the ADHD
Rating Scale as a clirlician administered and scored instrument. J Atten

Disord. (2001) 5:107–15. doi: 10.1177/108705470100500204
222. Zhang S, Faries DE, Vowles M, Michelson D. ADHD Rating Scale

IV: psychometric properties from a multinational study as a clinician-
administered instrument. Int J Methods Psychiatr Res. (2005) 14:186–201.
doi: 10.1002/mpr.7

223. Thaler NS, Bello DT, Etcoff LM. WISC-IV profiles are associated with
differences in symptomatology and outcome in children with ADHD. J Atten
Disord. (2013) 17:291–301. doi: 10.1177/1087054711428806

224. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer
disease: risk, mechanisms and therapy. Nat Rev Neurol. (2013) 9:106–18.
doi: 10.1038/nrneurol.2012.263

225. Morris JC. Clinical dementia rating: a reliable and valid diagnostic and
stagingmeasure for dementia of the Alzheimer type. Int Psychogeriatr. (1997)
(9 Suppl 1):173–176–178. doi: 10.1017/S1041610297004870

226. Williams MM, Storandt M, Roe CM, Morris JC. Progression of Alzheimer’s
disease as measured by clinical dementia rating sum of boxes scores.
Alzheimers Dement. (2013) 9:S39–44. doi: 10.1016/j.jalz.2012.01.005

227. Teng E, Becker BW, Woo E, Knopman DS, Cummings JL, Lu PH. Utility
of the functional activities questionnaire for distinguishing mild cognitive
impairment from very mild alzheimer disease. Alzheimer Dis Assoc Disord.
(2010) 24:348–53. doi: 10.1097/wad.0b013e3181e2fc84

228. Bastiaansen JA, Meffert H, Hein S, Huizinga P, Ketelaars C, Pijnenborg M,
et al. Diagnosing autism spectrum disorders in adults: the use of Autism
Diagnostic Observation Schedule (ADOS) module (2011) 4. J Autism Dev

Disord. 41:1256–66. doi: 10.1007/s10803-010-1157-x
229. Gotham K, Risi S, Pickles A, Lord C. The autism diagnostic observation

schedule: revised algorithms for improved diagnostic validity. J Autism Dev

Disord. (2007) 37:613–27. doi: 10.1007/s10803-006-0280-1
230. Siegel DJ, Minshew NJ, Goldstein G. Wechsler IQ profiles in diagnosis

of high-functioning autism. J Autism Dev Disord. (1996) 26:389–406.
doi: 10.1007/BF02172825

231. Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, et al.
Austism diagnostic observation schedule: a standardized observation of
communicative and social behavior. J AutismDev Disord. (1989) 19:185–212.
doi: 10.1007/BF02211841

232. Bryant RA. Early predictors of posttraumatic stress disorder. Biol Psychiatry
(2003) 53:789–95. doi: 10.1016/S0006-3223(02)01895-4

233. Burriss L, Ayers E, Ginsberg J, Powell DA. Learning andmemory impairment
in PTSD: relationship to depression. Depress Anxiety (2008) 25:149–57.
doi: 10.1002/da.20291

234. Dretsch MN, Thiel KJ, Athy JR, Born S, Prue-Owens K. Posttraumatic stress
disorder in the U.S.Warfighter: sensitivity to punishment and antidepressant
use contribute to decision-making performance. Traumatology (2013)
19:118–25. doi: 10.1177/1534765612455228

235. Keane TM, Fairbank JA, Caddell JM, Zimering RT, Taylor KL, Mora CA.
Clinical evaluation of a measure to assess combat exposure. Psychol. Assess.
(1989) 1:53–55. doi: 10.1037//1040-3590.1.1.53

236. Koenen KC, Lyons MJ, Goldberg J, Simpson J, Williams WM, Toomey
R, et al. Co-twin control study of relationships among combat exposure,
combat-related PTSD, and other mental disorders. J Trauma Stress (2003)
16:433–8. doi: 10.1023/A:1025786925483

237. Britt TW, Adler AB, Bliese PD, Moore D. Morale as a moderator of
the combat exposure-PTSD symptom relationship. J Trauma Stress (2013)
26:94–101. doi: 10.1002/jts.21775

238. Gray MJ, Litz BT, Hsu JL, Lombardo TW. Psychometric properties
of the life events checklist. Assessment (2004) 11:330–41.
doi: 10.1177/1073191104269954

239. Zhao X, Rangaprakash D Jr, Katz JS, Dretsch MN, Deshpande G. Data and
code for identifying different neuropsychiatric disorders using unsupervised
clustering methods. Data Brief (2018). doi: 10.1016/j.dib.2018.01.080

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Zhao, Rangaprakash, Yuan, Denney, Katz, Dretsch and

Deshpande. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 27 September 2018 | Volume 4 | Article 25

https://doi.org/10.1002/da.22291
https://doi.org/10.1038/npp.2013.122
https://doi.org/10.1016/j.jpsychires.2013.09.013
https://doi.org/10.1016/j.clp.2011.08.013
https://doi.org/10.1016/j.jad.2013.03.004
https://doi.org/10.1016/j.nicl.2014.11.012
https://doi.org/10.3389/fpsyt.2011.00062
https://doi.org/10.1016/j.pscychresns.2013.09.007
https://doi.org/10.1016/j.pscychresns.2012.05.007
https://doi.org/10.1016/j.jpsychires.2005.07.007
https://doi.org/10.1016/j.neubiorev.2015.07.007
https://doi.org/10.1016/j.pscychresns.2012.02.005
https://doi.org/10.1007/s12264-012-1261-3
https://doi.org/10.1177/108705470100500204
https://doi.org/10.1002/mpr.7
https://doi.org/10.1177/1087054711428806
https://doi.org/10.1038/nrneurol.2012.263
https://doi.org/10.1017/S1041610297004870
https://doi.org/10.1016/j.jalz.2012.01.005
https://doi.org/10.1097/wad.0b013e3181e2fc84
https://doi.org/10.1007/s10803-010-1157-x
https://doi.org/10.1007/s10803-006-0280-1
https://doi.org/10.1007/BF02172825
https://doi.org/10.1007/BF02211841
https://doi.org/10.1016/S0006-3223(02)01895-4
https://doi.org/10.1002/da.20291
https://doi.org/10.1177/1534765612455228
https://doi.org/10.1037//1040-3590.1.1.53
https://doi.org/10.1023/A:1025786925483
https://doi.org/10.1002/jts.21775
https://doi.org/10.1177/1073191104269954
https://doi.org/10.1016/j.dib.2018.01.080
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Investigating the Correspondence of Clinical Diagnostic Grouping With Underlying Neurobiological and Phenotypic Clusters Using Unsupervised Machine Learning
	Introduction
	Attention Deficit Hyperactivity Disorder
	Alzheimer's Disease
	Autism Spectrum Disorder
	Post-traumatic Stress Disorder
	Post-concussion Syndrome

	Materials and Methods
	Participants and Non-imaging Measures
	ADHD
	AD
	ASD
	PTSD and PCS

	Data Acquisition and Preprocessing
	Connectivity Measures
	Clustering and Feature Selection
	Site-Specific Analysis
	Elimination of Outlier Subjects
	Functional Interpretation of Selected Connectivity Features—Enrichment Analysis

	Results
	Discussion
	Connectivity Features Important for Clustering
	ADHD
	AD
	ASD
	PTSD/PCS

	Phenotypic Features Important for Clustering
	ADHD
	AD
	ASD
	PTSD/PCS

	Site-Specific Analysis
	Connectivity-Based Reassignment of Diagnostic Labels
	Outlier Subject Elimination

	Conclusion
	Future Recommendations
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


